1.AI+办公是AIGC浪潮的核心,有望深刻改变办公模式
1.1.AI+办公是AIGC浪潮的核心,海外巨头引领潮流
AI+办公是此次AIGC浪潮中的核心受益方向。此次AIGC浪潮的引爆点是基于自然语言处理大模型技术的文字创作工具ChatGPT快速成长为火爆全球的现象级应用,随后基于对图像、视频、音频等进行处理的多模态大模型的应用也快速推广起来。AIGC即生成式人工智能天然是面向文字、音视频、图像等内容自主创作场景的AI技术,因而其可以直接提升现有各类型办公软件的产品力,从而推动办公软件的迭代升级。
微软推出Microsoft365Copilot订阅服务,用AIGC技术重塑办公体验。2023年3月16日,微软正式发布Microsoft365Copilot订阅服务,其背后技术支撑是Copilot引擎,使用了Microsoft365Apps、MicrosoftGraph和LargeLanguageModel三大核心基础技术。Microsoft365Apps是Word、Excel、PowerPoint、Outlook、Teams等一系列常见的微软办公软件;MicrosoftGraph是一个可以帮助访问在Microsoft365Apps上积累的用户业务数据的安全智能网关,这些数据来自于用户的文档、电子邮件、会议、聊天、日历等环节;大语言模型是一个创造性的引擎,能够解析并产生人类可以阅读的文字,其使用了OpenAI的ChatGPT及最新发布的GPT4模型。用户在Microsoft365Apps里使用自然语言输入提示词后,提示词会通过Copilot系统进行基础训练,这一过程可以提高提示词的质量,使提示词变得可以被执行,在基础训练的过程中最重要的一环便是调用MicrosoftGraph中用户此前产生的各项数据,来理解并改善提示词的质量,之后将改善后的提示词发送给LLM,前述过程叫做预处理。LLM对提示词进行响应并进行后处理,这个过程会再次通过MicrosoftGraph调用用户数据进行训练后,在通过安全性、合规性和隐私审查之后,生成反馈答复,最后通过Copilot系统向用户输出反馈答复并驱动APP执行相关的命令。通过这样一套完整的处理流程,用户可以在Word等办公软件里通过自然语言下达指令,此后办公软件便自动呈现出一个具有明显个人信息特征的反馈初稿,极大提高了用户的办公效率。
Microsoft365Copilot为用户办公模式带了个革命式的变化,有助于提高办公创作效率。Microsoft365Copilot一方面会嵌入到用户高频使用的各类办公软件之中,包括了Word、Excel、PowerPoint、Outlook、Teams等,从而帮助用户从繁琐的事务性工作中解放出来,让用户更专注于创造性工作,从而提高办公效率。另一方面还引入了全新的商务聊天应用场景,可以基于用户过往积累各项业务数据,按照用户需求生成全新的内容,提高创作效率,例如用户提出“请告诉团队成员如何更新销售策略”指令后,系统会根据用户过往的会议讨论记录、聊天记录、电子邮件沟通内容等生成一份全新的销售策略。用户可以对生成后的内容进行自主修改、保留或舍弃,使得Word更具创造性、Excel更具分析性、PowerPoint更具表现力、Outlook更具效率性、Teams更具协作性。
Microsoft365Copilot使用自然语言作为人机交互的渠道,降低了Office办公软件的使用门槛。根据微软发布会上披露,有90%以上的PowerPoint、Excel功能是不被用户使用的。我们认为这一现象并不是因为这些功能无用,而是过往通过菜单按钮或者函数公式的方式进行交互的门槛较高,多数用户未经过系统学习就无法直接调用相关功能。引入Copilot之后,所有的办公软件在右侧都会形成一个聊天框,用户将自己想要实现的效果以自然语言聊天的方式输入后,软件会直接实现相关的功能,从而使得丰富的软件功能都得到应用,极大降低了用户的使用门槛,有助于进一步提高用户规模和粘性,从而提高付费月活用户数量。
Microsoft365Copilot的推出将为微软带来新的收入来源,提高付费用户ARPU。目前Microsoft365Copilot仍处于内部测试阶段,根据科技媒体TheInformation报道,微软正在向包括美国银行、沃尔玛、福特和埃森哲等在内的600多家大型机构客户测试具备AI能力的Microsoft365Copilot订阅服务,在已经付费订阅Microsoft365年费会员的基础上,每1000名员工使用Copilot服务需要支付的额外年费为10万美元,对应额外的ARPU为100美元,目前试点客户的付费意愿超出微软早先预期。我们根据微软财报数据测算,2022年Microsoft365机构订阅的ARPU约为103美元,此次Copilot服务的试点价格有望推动ARPU实现接近翻倍增长。
Adobe推出生成式AI模型集Firefly,展示出强大的设计创作能力。2023年3月21日,Adobe正式推出生成式AI模型集Firefly,随后在Photoshop应用中进行了测试上线。目前其主要具备以下能力:1)文字转图像,Firefly可以根据用户的提示词自动生成所需图像,如输入“天空增加极光”指令之后,可以自动为图像中的天空部分增添极光;2)生成填充能力,可以根据原始图像中内容,自动拓展、填充、扩容成为一个内容更加丰富的图像;3)文字效果:将特定纹理显示到艺术字体中等。后续Firefly还将探索视频自动处理、文字生成3D/矢量文件、草图变全彩图像等一系列AI功能。Firefly的推出有望极大提高设计创作效率,降低设计创作用户门槛,改变目前的创意设计行业格局。
1.2.国内办公软件厂商奋起直追,AIGC功能实现快速迭代
金山办公是国内办公软件厂商探索AI技术应用的先行者之一。2017年,AI在金山办公内部被首次上升到战略层面,由姚冬组建了数百人的AI团队,主要负责AI算法改进和工程产品的落地。2018年,金山办公正式对外提出了“多屏、内容、云、AI”的发展战略,AI战略公开亮相。在AI团队成立的前两年,团队主要强调积累AI研发能力,包括算法能力、工程能力、数据采集和分析能力等。之后两年公司开始更加注重AI技术的产品化,在公司产品中增加了一系列AI功能,推出了包含智能美化、智能校对、智能辅助写作、全文翻译、图像识别等一系列的AI辅助办公功能,来帮助提高用户的办公效率。例如智能美化可以帮助用户在提供基础文本的情况下整体改换PPT模板和配色、统一字体和排版等;智能校对可以一键识别并校对文档中的错别字、多漏字、标点符号错误、语法错误、敏感词错误等;智能辅助写作可以根据提纲自动生成文字段落或者进行句子补写,帮用户打底稿,其储备的数千万篇语料库都来自于权威媒体和政府公开网站,在公文写作等场景上有较多应用。截止2021年7月,WPS的智能美化月活用户超过百万,智能校对的月校对字数超过了70亿,智能生成的内容占据了云端整体内容资源的33.6%,AI战略对公司产品力和用户粘性的提升已经体现出明显的帮助。现阶段及未来,公司发展战略的重心已经成为加速AI产品的产业化,强化对公司营收增长的积极作用,从而实现长期的可持续发展。
Kraken新任CTO:人工智能对加密货币行业的影响日益增长:6月5日消息,加密货币交易所Kraken任命Vishnu Patankar担任新任首席技术官(CTO)。Vishnu Patankar表示,人工智能作为他正在考虑的技术之一,人工智能对加密货币行业的影响日益增长。此外,他还认为生成人工智能和应用于NFT的个性化、欺诈预防、网络安全都是加密货币和人工智能之间的共生领域。 他的重点将放在将公司扩展到最有前途的加密领域,同时保持对安全和客户的关注。
据悉,Patankar此前作为StockX首席技术官,曾帮助公司推出NFT产品。[2023/6/5 21:17:21]
金山办公接入多个大模型供应商,可以更精准的满足用户AI创作需求。目前金山办公的产品已经接入了MiniMax、百度文心、CopyDone等多家大模型,未来还有望接入新的大模型。目前市面上可供选择的大模型正在持续增加,既包括百度、阿里、科大讯飞等巨头的大模型产品,也包括初创公司的产品。各家大模型目前的表现各有所长,并没有哪一家有绝对领先的产品力表现,因而同时接入多家大模型,按照不同的用户需求去匹配调用不同的大模型进行内容创作,能够更好的满足用户的创作需求。例如CpoyDone是一个专门面向场景营销打造的大模型,可以生成丰富商品类型、海量内容平台风格的文案、图片、视频内容,因为在文案营销场景WPS可以优先对接CopyDone大模型;MiniMax是一个多模态大模型,在对华聊天等场景更有优势;百度文心则凭借其丰富的语料库在文学创作等领域可以更好的满足用户需求;WPS作为大模型的调度匹配中心,可以统筹各家大模型发挥出“1+1>2”的效果。
基于AI大模型的WPS轻文档率先进入内测阶段,展示出较强的文字创作能力。2023年4月18日,金山办公发布了WPSAI的Demo演示视频,官宣WPSAI将嵌入金山办公全线产品。率先进入内测阶段的是具备AI能力的WPS轻文档,这是一款对标NotionAI等轻办公产品的在线内容协作编辑工具,可以借助大模型自动生成新闻稿、工作周报、运营策划案等;也可以实现多轮对话,持续就某个主题进行讨论;也可以对现有文档进行改写、扩写、缩短、润色等;还可以对指定文档生成主旨摘要、文章大纲等功能。WPSAI显示出较强的文字创作能力,有望提升用户创作效率。
福昕软件在海外版PDFEditorCloud中集成ChatGPT,向用户提供AIGC功能。福昕软件是PDF板式办公软件龙头企业,其推出的FoxitPDFEditorCloud是一款在线PDF编辑器,用户可以通过该工具在线阅读及编辑PDF文件。2023年4月25日,海外版的FoxitPDFEditorCloud成功集成ChatGPT,付费用户目前主要可以使用以下AIGC功能,1)文档摘要,根据文档内容快速生成简洁、准确的摘要;2)文档改写,在不改变文档原意的情况下进行重写,优化文档的表述方式,提高可读性;3)文档翻译,将选定内容或者摘要翻译成指定语言;4)文档内容问答,可以在对话框中就感兴趣的内容进行提问,其将根据文档内容生成答案,并定位到相应段落。通过上述功能,可以显著提高用户的文档阅读效率以及多语言工作环境下的工作效率。作为一款线上编辑软件,FoxitPDFEditorCloud的AI功能具备快速迭代的优势,预计每两个星期就推出一个新版本,持续拓宽AIGC技术在文档领域的数字化场景应用,优化用户体验,从而提供用户付费率。
AIGC功能有望提升福昕软件ARPU。由于FoxitPDFEditorCloud提供的AI功能基于ChatGPT,因而对用户均有次数/字数限制,文档改写每用户每月上限为100页;文档翻译每用户每日上限为50个指令,每个指令最多2000字;文档内容问答每用户每日上限为50个指令或问题;一旦超过相应限制,用户需要进行额外付费,从而有助于提高用户ARPU。万兴科技拥有完善的创意办公软件产品线,是国内创意办公软件的领跑者。公司产品涵盖视频创意、绘图创意、文档创意和实用工具四大类别,形成了万幸喵影、万兴播爆、亿图脑图、万兴爱画、万兴PDF等具有广泛影响力和庞大用户群的核心创意办公软件产品。
万兴科技长期加码AI技术研发投入,AI产品逐渐进入落地期。公司从2020年就开始洞察到AI技术的发展前景,并快速组建了一支上百人的高素质技术研发团队,近两年在视频生成算法、图像生成算法、GAN生成算法、音频生成算法等AI前沿算法等领域均取得多项技术研发成果,自2022年下半年以来公司视频创意、文档创意、绘图创意等主要产品线均陆续发布了带有AI功能的新版本,并推出融入多项AI技术的新产品。在视频创意产品线,2022年公司完成了万兴喵影大版本更新,上线了AI分割、AI抠像、AI降噪、AI音频重组、AI文案生成等AI功能套件,并在2022年底发布了基于AIGC技术的数字人营销视频创作工具万兴播爆,可以实现文生视频、虚拟人直播等AI功能;在绘图创意产品线,2022年11月公司上线全新的AIGC图像生成工具-万兴爱画,支持AI文字绘画、AI以图绘图、AI简笔画三种创作模式,用户输入一段文字描述即可获得多种艺术风格的AI绘画作品,或者输入图片后将其转化为绘画作品;在文档创意产品线,公司发布万兴PDF的全新版本,引入AI技术,新增翻译等专业功能,提升用户体验。
万兴科技积极拥抱大模型技术,推动AI产品力实现快速提升。2023年2月,公司宣布其在海外运营的视频创意软件WondershareFilmora已经全面接入了ChatGPT母公司OpneAI的商用服务,在3月份开通了GPT-4模型的商用账号权限,在4月份与微软签订云服务框架协议,双方将在云服务及AI技术领域全面深化合作,未来优先使用微软新品,目前正在持续推动多个海外产品接入GPT大模型。2023年3月31日,公司发布基于AIGC大模型的“真人”出海营销短视频工具-万兴播爆,并在6月推出桌面版产品,万兴播爆基于AIGC大模型可以提供120多种语言的文案脚本快速生成能力以及60多种国籍的数字人播报能力,还可以进行数字人的定制服务,相较传统视频生产模式,万兴播爆可以使成本投入降低至原先的1/5,并大幅提升用户的生产效率。
AIGC新品为万兴科技带来新的盈利点,有望提升用户ARPU。公司传统的万兴喵影个人年费会员定价为269元,5年期会员的年费进一步降低至120元;万兴喵影企业年费会员定价为3299元,可支持5台设备同步使用,相当于单设备年费价格为660元。公司推出的AIGC新品中,万兴播爆的年费会员定价为1688元,相较传统软件产品的定价有显著提升;万兴爱画则按照创作次数进行付费,10次图片创作合计5元,最便宜的100次图片创作合计费用为20元,按次收费的方式在客户需求侧有更高的成长上限。总体来看,AIGC新品的定价要高于传统创意软件,有望为万兴科技带来新的盈利点,提升用户ARPU。
2.智能驾驶是AI大模型落地的重要场景
2.1.自动驾驶:AI大模型有助于我们提升覆盖小概率路况的效率
2.1.1.对小概率路况的覆盖是自动驾驶落地的核心问题
由于一旦发生事故造成的后果极为严重,自动驾驶是一个对小概率情况非常敏感的场景。由于交通事故将会产生非常严重的后果,对于主机厂而言,在责任明晰之前,即使是99.99%的可靠性也是不能接受的,因为这可能意味着每卖出10000台车可能就会产生一起事故。行业特点决定了要实现自动驾驶就必须先对长尾场景进行有效覆盖。测试里程的积累是有效覆盖小概率路况的前提。根据广汽的预测,要实现L4级自动驾驶所需要的长尾场景覆盖程度,至少需要完成10亿个测试场景,最小测试里程也需要10亿公里,这两个数据分别是实现L2级自动驾驶的10万倍、1万倍。
中宣部副部长庄荣文:提升人工智能、5G、区块链等安全防护能力:11月5日消息,中央宣传部副部长,中央网信办主任、国家网信办主任庄荣文在人民日报发表《营造良好数字生态》文章指出,提升网络安全防护能力。防范应对数字新技术新应用安全风险,密切跟踪发展动态,提升人工智能、5G、区块链、工业互联网、车联网等安全防护能力。(财联社)[2021/11/5 6:32:59]
此前,测试里程的积累主要有两种方式。一种是通过自动驾驶车队来进行数据采集,以Waymo为代表;一种是通过私家车进行数据采集,以特斯拉为代表。
通过自动驾驶车队进行路测来覆盖小概率路况的方法效率比较低。Waymo是自动驾驶领域的霸主,但是在过去很多年里,感知问题、行人问题、软件问题等方面,Waymo的接管频率并没有收敛。毫无疑问,Waymo的自动驾驶能力是逐年增强的。那么,Waymo在软件问题、行人问题等方面的表观“退步”就只能用它在覆盖更多的小概率路况来解释。比如,在高速公路等路况相对简单的场景下测试获得好的结果之后,Waymo会把路测地点逐渐向难度更高的城区街道进行拓展。
众包方式能在一定程度上提升对小概率路况的覆盖效率。特斯拉采用影子模式取代测试车队。影子模式本质上是通过众包的方式来解决场景的快速积累问题。在这一模式下,即使在人进行驾驶的时候特斯拉自动驾驶系统同样也在进行计算自己会怎么做,然后和人的选择进行对比。如果自动驾驶系统和人的选择不一致,就对这类数据进行汇集,然后交由工程师判断自动驾驶系统的选择是否合理。2020年3月,特斯拉就申请了从车队中获取自动驾驶训练数据的专利。由于特斯拉的汽车数量远远多于自动驾驶测试车队,影子模式可以更快地实现对驾驶长尾场景的积累,同时得到的结果也有更强的统计学意义。截至2019年末,特斯拉累计交付搭载自动辅助驾驶硬件的车辆85万辆,AP激活状态下累计行驶里程已超过20亿公里,远远超过竞争对手(Waymo为2000万公里)。由于特斯拉保有量持续攀升,其他竞争对手和特斯拉之间在数据积累量以及长尾场景覆盖程度上的差距将会越拉越大。
2.1.2.大模型对于覆盖小概率路况意义重大
2.1.2.1.大模型可以大幅提升场景生成、标注的效率
随着AI大模型的出现,我们覆盖自动驾驶小概率路况的效率有望大幅提升,这种效率提升至少源于两个方面:
场景生成
利用AI大模型进行场景生成是覆盖小概率路况的新思路。相对于单纯的路测,直接进行场景生成,并将仿真结果与路测相结合对于快速实现路况覆盖大有裨益。比如毫末已发布DriveGPT雪湖·海若,可以实现三项能力:按照概率生成很多个场景序列,每个场景序列都是未来可能会出现的一种实际路况;在所有场景序列都产生的情况下,能对场景中最关注的自车行为轨迹进行量化。可以实现在生成场景的同时就产生自车未来的行车轨迹;基于所生成的轨迹,实现决策逻辑链的输出。
值得注意的是,毫末的雪湖·海若引入了类似于GPT系列模型中的人类反馈强化学习机制。即把系统和驾驶员的判断和决策进行对比,若对比结果一致,系统会被打高分,反之则会被打低分。这与特斯拉FSD的模式有异曲同工之妙。
数据标注
除场景生成外,AI大模型在自动标注方面同样能够发挥重要作用。在AI的1.0时代,数据标注主要依赖于人工,导致数据的标注时间很长,且成本比较高。尤其在自动驾驶领域,由于路况复杂,存在大量的标注需求。基于大模型可以实现自动标注,从而大幅度降低成本,提升效率。如毫末智行的雪狐海若将场景识别能力对外开放。此前采用普通的标注方案标注一张图片需要约5元,而DriveGPT雪湖·海若只需要0.5元,大幅节约了成本。
2.1.2.2.大模型虽难以完全解决小概率路况的问题,但依然对自动驾驶行业意义重大
当然,必须承认的是,大模型依然无法帮助我们100%解决小概率路况带来的问题。大模型能力来自于深度学习,而不来自于强化学习。从技术路线来看,大模型是“深度学习+人类反馈强化学习”。为了测试强化学习对于模型能力的影响,OpenAI分别基于GPT-4基础模型和加入强化学习的GPT-4模型运行了一系列考试中的多项选择题部分。结果显示,在所有的考试中,基础的GPT-4模型的平均成绩为73.7%,而引入强化学习后的模型的平均成绩为74.0%,这意味着强化学习并没有显著改变基础模型的能力,换句话说,大模型的能力来自于模型本身。根据OpenAI的表述,强化学习的意义更多地在于让模型的输出更符合人类的意图和习惯,而不是模型能力的提升。
既然大模型没有摆脱深度学习框架,这就意味着现阶段的AI背后依然是统计学,无法彻底解决残差问题。换言之,“能力的不可解释性”问题依然无法在根本上得到解决,我们依然无法实现100%的正确,只能通过覆盖更多小概率路况的方式来提升安全性。大模型理论上难以帮助我们实现小概率路况的100%覆盖。从本质上来说,利用AI大模型进行路况生成虽然能大幅提升效率,但依然类似穷举。而通过穷举法实现对小概率路况的全覆盖从理论上不太可能实现,本质的原因在于“路况本身是一个无限场景”。试想一下,如果我们要打开一个密码箱,我们只需要从“000”到“999”全部尝试一遍,箱子就必然已经被打开了;同样的道理,在棋类运动中,每一步可以“落子”的情况都是有限的集合,换句话说,所有可能性是也是可以被遍历的,所以这两个场景都是“有限场景”,而公开道路自动驾驶场景则是一个“无限场景”。
2.2.AI助力智能座舱交互体验提升
智能座舱交互属性毫无疑问会不断上升。从必要性角度:汽车行业正从卖方市场转向买方市场,行业演进的核心驱动因素由技术与产品转变为消费者需求。传统汽车工业已走过百年,随着行业的高度成熟,这一市场正逐渐由卖方市场转变为买方市场,行业向前发展的关键因素也从技术的突破和产品的打磨转向消费者的需求变化。
2.3.AI带动车辆研发设计效率提升
随着项目周期的压缩,汽车研发效率正变得越来越重要。汽车的开发周期正逐渐缩短,这使得供应商的项目周期被大幅压缩,此前项目可能是2-3年,而现在可能是1年多甚至不到1年,同时主机厂的定制化需求却越来越多,更短的开发周期和更多的定制化需求对Tier1的智能制造能力提出了更高的要求。随着自动驾驶功能模块逐渐增加,需要测试的里程数快速增加,并没有完全足够的时间进行路测,同时由于涉及到安全,测试环节本身不能简化,所以设计、测试的效率在一定程度上正逐渐成为制约项目能否快速及时交付的重要因素。
AI大模型对于汽车设计师效率的提升意义重大。比如中科创达GeniusCanvas将语言能力、视觉渲染以及特效制作能力结合在一起,可以通过辅助概念创作、辅助3D元素设计、辅助特效代码生成和辅助场景搭建及制作多方面帮助设计师完成创作过程,从而优化工作流程,并提高设计师的工作效率。概念创作方面,它能够把3-4周的工作周期缩短到1周,节省70%的时间。3D元素设计方面,它能够把4~6周的工作周期缩短到3天,节省85%的时间。特效及场景制作方面,它能够节省90%的时间。
人工智能区块链项目Fetch.ai已发布主网2.0,并公布未来6个月路线图:人工智能区块链项目Fetch.ai(FET)已于近期发布主网2.0,并公布未来六个月的路线图,主要包括:
1.代币经济:FET总供应保持不变,为1152997575 FET,然而主网上线时的总供应为1055156116 FET,且该网络有3%的“通胀”率,前三年网络运作计划是,缺失的代币将作为区块奖励铸成,使主网上的代币供应等同于ERC-20代币的供应。这将耗尽为挖矿分配的15%的代币供应。
2.桥接经济:主网启动的另一个关键元素是连接原生代币和ERC-20代币的桥接属性。最初选择限制可以通过桥接转移的代币数量,以确保网络的安全性不会因为现有质押合约中锁定的代币供应比例太大而受到损害,这些限制将持续到2021年10月才会完全移除,具体安排如下:
3月31日至5月31日:6000万FET
6月1日至7月31日:1.2亿FET
8月1日至9月30日:2.5亿FET
10月1日起:无限制。[2021/4/10 20:06:08]
2.4.国内智能驾驶公司积极拥抱AI新趋势
2.4.1.中科创达:推出GeniusCanvas,提升HMI交互体验
中科创达重视AI技术,利用kanzi推动智能驾驶舱的发展。在2022年,中科创达公布与地平线成立合资公司,聚焦智能驾驶赛道。kanzi是一个具有强大实时3D渲染能力的工具。中科创达推出的智能驾驶舱3.0使用了KanziforAndroid这种新技术,使得Android系统和Kanzi完美对接,实现了3D唱片、可定制实景导航、实时界面个性化定制、跨屏幕跨系统应用等功能。
中科创达利用Kanzi实现智能驾驶舱多屏交互。由于智能驾驶涉及人机共驾,智能汽车所承载的驾驶员信息、车外环境信息、车辆信息等越来越多,需要有更多的空间、分区域地呈现给用户,并确保和驾驶员有良好交互。基于KanziforAndroid支持的多屏联动,在导航的过程中可以实现地图跨屏,全方位呈现3D导航;在导航结束时,可将地图由副驾驶屏收缩至中控屏。多方选择以适应更多的个性化需求。中科创达GeniusCanvas赋能汽车产业发展,打造全新HMI交互体验。GeniusCanvas的一个工具是大模型引擎,它能够把想法和理念转化为文案,并进一步转化为创意和作品,最终通过技术手段转化为应用程序。GeniusCanvas的第二个工具来源于KANZI产品。Kanzi与大模型结合后,能够利用大模型的知识库及创新能力,快速创作丰富多彩的KanziHMI概念效果及特效,构建多样的3D模型及形象库,并且在车机系统中能够实现实时预览功能。目前,全球已有超过百款车型选用了Kanzi,每年有数千万辆搭载Kanzi技术的量产车型落地。
2.4.2.德赛西威:联合高校推进大模型本地化,赋能自动驾驶
德赛西威联合高校推进大模型本地化部署。德赛西威已和中山大学、南洋理工大学等高校合作,通过尝试和布局基于大模型的数字虚拟助手、图像数据自动标注、自动场景创建、自动编程等,构建技术支撑,相关方案已经在上海车展上亮相。在AI大模型本地化过程中,德赛西威能够为客户提供差异化、全方位的技术支持和解决方案。AI大模型技术可以和德赛西威现有技术形成完美融合。比如,AI大模型可以在感知融合、感知预测和规划上实现更为精准的数据补充和预测,从而在行为预测方面给予自动驾驶更多地帮助,并给出更多的控制选择。
2.4.3.虹软科技:已发布可商业落地的AIGC产品
公司已发布AIGC产品,助力小B客户大幅降低商品展示成本。1)商业拍摄市场空间超500亿元,虹软方案能大幅降低对模特的依赖,降低商品展示成本,实现对于原方案的替代。2)采用目前市场上的方案在很多细节处存在畸变和失真,虹软的方案能使得商品展示“所见即所得”。3)公司计划在2023年推出静态商品展示图解决方案,包括商品加背景静态图像的生成,以及商品加数字模特图像生成,后续计划推出动态视频以及3D内容。商业模式:与公司手机、汽车业务类似,AIGC商业模式分为会员服务费和生产流量费两部分。1)在会员服务会部分,公司会根据不同的会员等级开放不同的功能,比如不同的场景库和模型库;此外,公司可以针对一些增值的API做差异化的定制开发。2)在生成流量费部分,公司将按照生成内容的实际算力消耗直接定价。
2.4.4.经纬恒润:自主开发驾驶仿真测试软件,推出智能座舱AI单品
在自动驾驶仿真方面,经纬恒润自主开发仿真软件,助力驾驶测试。经纬恒润自主研发了综合驾驶测试仿真软件ModelBase,这一软件可以被用于乘用车、商用车的整车电控系统、ADAS系统的设计、测试和验证。涉及电控系统的全开发周期,包括早期的算法仿真测试,控制器的硬件在环测试,半实物台架测试,以及车辆在环测试。目前这一软件已经被已应用于一汽、东风、蔚来等50余个项目中。在智能座舱交互方面,经纬恒润基于AI技术开发了音乐律动氛围灯等一系列产品。经纬恒润音乐律动氛围灯具有实时歌曲特征识别和离线歌曲特征识别两种模式。其中离线歌曲特征识别模式的相关功能就是基于AI音乐风格分类算法和AI音乐段落划分算法进行实现。通过音乐特征识别,为氛围灯音乐律动提供丰富的效果组合,提升用户体验。
3.金融是AI落地核心场景之一
3.1.金融行业敢于尝试新技术,是AI落地核心场景之一
相比于其他行业,金融行业在新技术应用上有三个特点。第一个特点,是很重视新技术发展,并且敢于尝试。因为金融行业的日常业务活动涉及大量交易,技术上的微小进步有可能会为客户带来巨大的收益,因此金融机构对于新技术很敏锐,会积极追求将新技术应用于日常业务。第二个特点,是金融行业IT预算充足,对于性价比没有其他行业那么敏感,在IT乙方的眼里,金融机构甲方客户往往是最好吃的一块蛋糕。第三个特点,是金融机构对于系统稳定性和数据安全有极高的要求。这个特点往往会跟第一个特点冲突,但是系统安全永远是金融机构的底线,在此底线之上才会去追求新技术的应用。不管是证券、银行还是保险,一旦核心系统出现故障超过一定时间,就容易收到监管函,相关IT部门领导需要承担管理责任。例如2022年5月16日,招商证券集中交易系统发生故障,9月8日收到深交所监管函。
3.2.AI技术能够大幅提升金融行业工作效率和用户体验
2022年12月,全球管理咨询公司麦肯锡发布《麦肯锡中国金融业CEO季刊》——《今日科技重塑明日金融:影响全球金融业未来格局的七大科技》,《报告》总结了七大重塑金融业未来格局的新技术,其中就包括了人工智能。一是人工智能。从单点尝试走向全面应用,深度融合业务与运营各环节;在项目/产品落地速度、整体工作效率、综合成本控制、安全保障上为金融机构提供额外价值。二是云计算。规模化上云趋势加快,云计算与边缘计算相得益彰;得以灵活布置的前端网点和后端算力,将解锁一系列高客户感知的应用场景。三是元宇宙与全面虚拟技术。虚拟感知构筑虚拟世界,重塑客户服务与内部运营;空间计算技术、AR/VR/MR技术的不断发展将重新定义客户体验和内部运营。四是区块链与Web3.0。互联网范式迭代,颠覆未来商业模式;区块链、数字资产、去中心化架构将颠覆原有的门户平台商业模式,甚至催生新的金融服务领域。五是下一代通信。高带宽、低延迟、强安全的数据传输赋能技术解决方案,物联网技术持续推动新用例落地;高通量卫星网络、5G/6G、低能耗局域网等从天到地的通信技术各自发展和互相融合,将赋能更快速、更安全的金融产品和应用。六是下一代集成开发。平民开发、灵活部署、智能辅助、自动开发将变革传统技术密集的开发流程,进一步降低开发门槛,科技能力不再是技术企业独有的护城河。七是信任架构与数字身份。构建数字信任体系,夯实金融科技安全基石;零信任架构、数字身份、隐私工程等技术保障金融和隐私安全,增强信任。
15个大数据、人工智能和区块链项目在上海市静安区签约:10月22日,以“新基建·新要素·新未来”为主题的2020上海静安国际大数据论坛举行,数十位专家学者围绕大数据如何助推新基建、数智产业和区块链产业发展等话题发表主旨演讲,现场还举行了15个大数据、人工智能和区块链重大项目签约仪式。(凤凰网)[2020/10/24]
3.3.上市公司纷纷推出AI产品
3.3.1.恒生电子:推出智能投研产品,研发金融大模型
恒生电子基于大模型推出智能投研产品,包含了三个子产品。第一个叫CHAT,通过CHAT可以问到各种各样的数据。它就像是一个金融资讯数据的情报员,使用方可以问F9、问行情、问研报、公告资讯、问观点提取等等,它底层的关键性技术用到了搜索加上大模型,通过这样的技术来去调用整个恒生聚源的金融资讯数据库,从而能够实现语控万数。第二款产品叫ChatMiner,是一个指定文档的挖掘器。比如用户自己有一篇文档,上传以后可以针对这一篇文档去提问,ChatMiner就可以根据这篇文章里面提到的内容去对问题予以回答。底层的关键技术是向量数据库加上大模型。第三个产品WarrenQ,是一个一站式的数智化投研端。WarrenQ里面有非常多的场景、功能,大模型的产品ChatMiner也在里面,再到阅读器、云笔记、原文引文和溯源、演算板、其中的估值模型,以及在线分享脑图等等都已经在投研场景上去实现全面的打通,所以它是一个一站式投研平台。
插件层可以解决数据即时性的问题。第一列是NL2SQL。比如用CHAT去查恒生电子的行情,它在用这个大模型的接口返回一段话的同时,调了NL2SQL接口,到数据源库里面去把恒生电子的行情的时间序列给查出来,变成一个K线图返回,用户就可以看到最及时、最更新的行情;第二个搜索接口也很重要。第一个NL2SQL更多是解决的时间序列格式的数据即时查询性的问题,搜索接口解决的是文本类的数据,因为第一个接口没办法获取最新消息、事件、新闻研报公告。ChatGPT底层的技术就是向量数据库,它涉及到私域的大量文档怎样去进行向量化、做相似性的查询和存储。这个插件层很重要,它是金融领域要做垂域产品非常重要的支撑性力量。结合恒生电子训练出来的金融大模型一起,向上可以去做各种各样的应用,包括智能投研、智能投顾、财富管理等服务。恒生电子的大模型到9月30号就可以开放试用,年底会进一步优化。恒生专门为金融行业打造的大模型的能力,已经提升到可用的程度,9月30号会开放试用接口。到年底会把推理性能进一步优化,把逻辑能力也进一步的升级,使得它和光子配套能够统一构成一个AI直通应用的体系。
3.3.2.同花顺:发布人工智能及虚拟人产品
同花顺早在2013年,同花顺便开始布局人工智能领域,首推财经搜索引擎爱问财,到2019年全业务全力推进AI,目前已经积累了多款AI产品。
i问财投研平台:i问财投研平台提供了多维度的股票、基金、债券数据,投资者输入自然语言问句,搜索想要的数据和信息。此外还有条件选股、研报、图表精选策略、产品搜索、短线复盘、策略回测宏观经济等功能。同花顺i问财智能头部数字人致力i于用人工智能技术多模态的交互及富媒体的表达,解决用户个性化的投资问题,提升用户的投资能力,辅助完成投资目标。
iFind:iFind大金融数据终端是一款融合了金融数据专业咨询投研分析工具的智能终端,目前覆盖了国内全部的证券期货公司,超80%的基金和商业银行,大部分媒体高校上市公司私募机构的产品涵盖了全球主要资本市场的股票、债券、外汇、商品、基金等品种,拥有超600万宏观行业指标,年增超50万篇,研报10余万新闻数据源,为用户提供全面的市场信息,iPhone的运用AI算法为用户提供智能预测、智能搜索和智能脉络等创新应用,让用户的体验更加高效便捷。2023年iFind将会借助AI技术,aigc系列,进一步提升用户体验和工作效率。
AI短视频平台:当前短视频是财经信息用户获取信息的主流方式,受限于制作门槛高,缺乏金融数据等痛点,导致短视频的生产效率低。针对前述痛点,同花顺研发了AI短视频平台,该平台是一款基于人工智能技术的视频制作和发布平台,通过集成先进的AI技术,自动化的处理视频素材,包括剪辑配音字幕等,结合数据的酷炫可视化展示能力,使用户快速的制作出高质量的短视频,同时该平台还提供了各种丰富的模板和主题,自动化生产出个性化的短视频。同花顺AI短视频提供快捷有趣的视频创作体验,助力打造附文本向短视频转型的数字化服务体系。
数字人交互一体机:数字人具有媲美真人的专业知识人设和情感,能在银行、证券、运营商、政务、医疗、教育等行业服务场景中,辅助完成业务咨询办理,营销推广宣传等任务,提升客户体验和营销成功率。现在大家看到的是具备了金融领域专业知识的数字人,能给用户提供实时金融数据。
同花顺虚拟展厅:虚拟展厅是同花顺利用虚拟人、人工智能、云计算等核心技术,助力企业便捷高效创造素质,实现企业产品和服务全景展示与交流互动,赋能企业宣传推荐、科普教育等功能的产品。虚拟展厅以3D全景展示线上配合声光动画等特效,可以给参观者带来全身心投入的沉浸式体验。虚拟展厅突破了时空限制,应用3D全景展示线上产品和服务,配合声光动画等特效,可以给参观者带来全身心投入的沉浸式体验。虚拟展厅突破了时空限制,全身心投入的沉浸式体验。
小花探影:上消化道检查功能板块主要功能用术中对检查部位进行导航提示,漏检部位、视野清晰度和病灶体提示。同时系统会自动截取部位和病灶图片保存,下消化道检查功能板块主要功能有手术技术术中识别回盲瓣和回肠末端等解剖位置,对视野清晰度评估和提醒出现异常病灶进行提示,我们这个产品已经取得了医疗器械二类证,并与多家知名医疗机构达成合作。
3.3.3.凌志软件:通过AI技术为日本金融企业提供服务
公司主要客户为日本的金融保险企业。公司已与日本优秀的一级软件承包商建立了长期稳定的合作伙伴关系。由于日本一级软件承包商数量较少,公司与其建立稳定合作关系后,能有效降低公司的销售费用和关系维护成本,并能提高合作效率。公司在与日本一级软件承包商合作过程中,积累了丰富的金融、房地产、电信、电子商务等行业经验,在客户中赢得良好的口碑。目前,公司第一大客户为全球顶尖金融服务技术供应商野村综研,2019年野村综研在世界金融科技排行榜上位列第十,是全球非常优秀的金融科技公司。目前野村综研除了服务母公司野村证券,也在积极对外输出IT能力,尤其是AI方面的能力。公司全面参与海外金融企业IT系统建设,并落地AI能力。公司参与完成了众多金融行业核心业务系统开发,包括网上交易系统、客户关系管理系统等,保险业务的核心系统、营业支援系统、销售平台系统,银行客户的网银平台、养老金管理系统等,基本做到金融行业各系统全覆盖。其中基于OCR、NLP的工作底稿系统,在包含券商和基金公司的41家客户处上线运行,使用深度学习中的Transformer模型和CV目标检测算法,基于深度机器学习的文本纠错、文档一致性对比、招股书审核、债券募集书审核、多文件交叉审核、通用文档核查等功能也已经完成,已开始在多家券商进行体验测试,陆续对客户进行升级。
4.AI加持,设计与工业软件将实现降本增效
4.1.AI对于设计效率提升大有裨益
动态 | 南宁举办人工智能与区块链在安全生产领域应用专题讲座:1月12日,南宁在市委、市政府会议中心举行人工智能与区块链在安全生产领域应用专题讲座。人工智能与区块链研究及应用领域专家周锦霆,为全市安全生产领域职能部门的干部职工作了题为《人工智能与区块链在安全生产领域的应用》的专题辅导讲座。讲座中,周锦霆结合符合国家战略发展布局需要的人工智能驱动区块链技术,以及该技术如何保障安全生产的全过程展开授课,从AI和区块链技术的特征及融合、AI+区块链技术保障安全生产、AI+区块链应用方案及发展前景,南宁住房、水利及交通等建设现状,南宁绿地集团项目现场实施情况,服务南宁的安全生产解决方案等6个方面,对人工智能与区块链如何更好应用于安全生产领域进行详细阐述。(南宁日报)[2020/1/13]
4.1.1.AIGC降低设计软件使用门槛
目前的AI辅助的能力仅限于为用户提出建议并代替部分重复性设计工作,减轻设计师部分负担,并不能降低软件使用门槛。以最新发布的AutoCAD2024中的AI辅助功能为例,‘ActivityInsights’可以记录用户对图形文件的所有操作并对工作流程和操作提供建议,‘SmartBlocks’能够根据之前绘图的放置位置对新的block进行自动放置。这些功能对设计师的帮助有限,也无法降低使用门槛。ChatGPT能够按照开发者的自然语言指示生成CAD代码,并给出相应的解释。目前在CAD领域,ChatGPT能够支持Autodesk公司开发的VisualLISP/AutoLISP语言、Maya核心脚本语言MEL、3dsMax相关产品的通用脚本语言MAXScript,以及用于AutoCAD平台二次开发软件包ObjectARX的VisualC++语言等。
微软代码平台GitHub发布编程辅助Copilot最新版本CopilotX,实现AI语音交互辅助编程。2023年3月23日,微软旗下代码托管平台GitHub发布了编程辅助工具Copilot的全新版本CopilotX,新版本接入GPT-4。GitHub首席执行官ThomasDohmke称,虽然自动补全代码已经大大提升开发人员的生产力,而全新的CopilotX能将开发人员的生产力提升10倍。工业设计软件也将出现自己的“Copilot”,显著降低软件使用门槛并提升生产力。工业设计软件有较高的使用门槛,但未来用户可以直接使用自然语言提出要求和限制调用AI进行代码编写和绘图,大大降低使用难度。同时,设计人员也可以直接利用AI省去重复性的设计工作,提升工作效率。
4.1.2.AIGC将进一步提升生成式设计的能力
AI可以自动生成大量符合要求的多样化设计方案,使得设计师能在更短的时间内探索更多设计选项,提高设计效率。传统的设计方法依赖于“建模然后分析”的循环,但在生成技术中,AI能够根据用户要求和限制比如材料类型、功能要求、性能限制、成本限制等信息,快速生成大量满足要求的CAD解决方案,并最佳解决方案,而无需人工干预。设计师可以在短时间内探索大量可能性,快速缩小选择范围并选择更优的解决方案。简化了设计流程,也有助于设计师能够更快地做出决策提高工作效率。通过生成技术可以最大限度地降低成本并优化性能。生成技术根据用户要求和限制去创建优化的产品设计,而不是先制作几何图形再验证,所以设计会针对最小成本和重量等目标进行优化。这种方法能够有效的减少材料使用,降低成本。
4.1.3.AI打破二维与三维的壁垒,实现精确转换
AI多模态大模型有望打破壁垒,实现二维图纸与三维BIM模型有效转换,提升设计效率。目前国内仍有大量BIM翻模需求,虽然已有插件和算法能够实现二维图纸翻模三维BIM模型,但翻模效果普遍较差,需要大量人工修正,AI大模型经过训练后有望提升翻模的准确率与精细度,取代人工翻模,实现降本增效。
4.1.4.AI赋能EDA,实现降本增效
Synopsys推出首个AIEDA套件并取得成效,未来可能利用AIGC编写代码。2023年4月,全球领先EDA厂商Synopsys宣布推出业界首个全栈式AI驱动型EDA解决方案Synopsys.ai,涵盖设计、验证、测试和模拟电路设计阶段,旨在帮助客户持续创新,更快实现更高质量的设计,同时降低成本。Synopsys.ai已获得包括IBM、英伟达、微软在内的多家领先企业的率先采用并取得显著成效。瑞萨电子在减少功能覆盖盲区方面实现了10倍优化,并将IP验证效率提高了30%。SK海力士将先进工艺技术的芯片尺寸缩小了5%。目前仍由工程师来编写芯片制造的C语音,未来可能由AIGC辅助甚至代替。
4.2.AIGC将有效提升工业生产效率
4.2.1.西门子与微软携手利用AIGC提升工业生产力
AIGC助力工业AI进一步发展。目前AI对于工业产品制造阶段的增强主要在于AI算法的制造执行和管理流程,AIGC的生成和推理能力都将为AI应用带来显著提升,进一步优化执行和管理流程。西门子与微软合作,共同为AIGC在工业方面的运用树立标杆。2023年4月,西门子宣布与微软达成合作,在多个方面使用生成式人工智能改进其工业控制工作流程,持续提升效率并推动创新。西门子Teamcenter针对微软Teams打造全新应用软件,增强跨职能部门的协作能力。双方将西门子的产品生命周期管理软件Teamcenter?与微软的协同平台Teams、AzureOpenAI服务中的语言模型,以及其它AzureAI功能进行集成。企业的服务工程师或生产操作人员可以通过移动设备,使用自然语言记录并报告产品设计或质量问题。同时,通过AzureOpenAI的服务,该应用可以解析前述非正式的语音数据,自动创建总结报告,并在Teamcenter中发送给相应的设计、工程或制造专家。与西门子Teamcenter的结合可为无法使用PLM工具的工作人员提供更多支持,使其能够以简单的方式参与设计和制造流程。
4.2.2.AIGC能够优化并生成3D打印方案,降低使用门槛
研究发现ChatGPT能够对3D打印参数进行微调优化,甚至提供合适的3D打印的解决方案,有效降低工作门槛并提高效率。Gcode是3D打印领域使用的一种编程语言,向3D打印机提供如何打印物体的特定指令。但是编写Gcode需要对3D打印流程有深入了解,手动编写非常耗时且容易出错。生成优化的Gcode能够确保产品质量并减少漫长的试错时间,从而节省材料和时间。研究人员发现ChatGPT在1小时内成功优化了15个打印参数并解释了每个参数更改的原因,这项任务本来需要大约三周才能完成。
4.3.设计与工业软件主流玩家均加速布局AI,并已取得一定成效
4.3.1.广联达:AIGC技术已被用于其核心产品
公司2015年就已经布局AI,把AI技术确立为公司核心技术,持续多年重点投入并取得成效。造价业务方面,突破基于深度学习的交互式生成技术,利用大模型技术提供智能组价和智能算量等服务。施工业务方面,劳务人脸识别终端实现量产,多项CV安全隐患识别算法集成进入施工蜂鸟盒子产品,助力蜂鸟系统成功入选工信部《国家人工智能创新应用先导区“智赋百景”》建设施工现场AI智能安全巡检应用场景典型案例。数字施工国际化方面,MagiCAD发布AI辅助设计功能,在核心区域继续扩大领先优势,在英国、德国、意大利等重点拓展区域保持良好的增长势头。
公司也在布局生成式AI,在设计业务中,概念设计的阶段之前是由设计师做创意,然后一笔一笔画出来,未来可以让AI模拟人的创意快速生成各种草图。针对智能设计领域,公司目前已有一个专门的团队在探索,在一些项目上已经进行了初步的试用,但整体上仍处于较早期的阶段。比如AI强排的功能,在拍地阶段,几十上百种的方案比选相比目前仅有几种方案的对比有更大的价值量。目前强排工具已进入用户验证,实时日照分析性能国内领先。AI在建筑行业的运用已有先例。Autodesk与DAISY合作提高施工设计流程的效率。DaisyAI是第一款由人工智能提供支持的木材设计CAD软件,可在10分钟内生成符合规范的最佳设计,每天为工程师节省2-3小时,减少80%木材浪费。Autodesk的Kratos研究项目则使用AI方法快速评估包括混凝土在内的多种材料的结构设计。2022年,Kratos与DAISY合作,使用Kratos计算木结构中的承重墙,并将结果输出给Daisy来生成详细的平面图,减少了地基中使用的混凝土,降低施工成本。
4.3.2.中望软件:已推出AI驱动的生成式设计功能
在CAD方面,公司可以根据已有数据研发内置的生成式设计功能。工程师可通过AIGC向软件指定他们的要求和目标,从而自动生成大量设计方案。目前AI驱动的生成式设计功能已在SiemensSolidEdge、PTCCreo及AutodeskFUSION360等主流CAD产品中投入使用。在CAE方面,AI可赋能仿真优化,提升仿真效率,助力公司工业AI模型训练。通过与AnsysTwinBuilder合作,微软ProjectBonsai可同时运行数百个机器或者应用的虚拟模型,并将这些数字孪生生成的数据,直接输入大脑对其进行优化。使用大量虚拟模型可以缩短训练时间,降低成本,并学习了解所有可能遇到的情况,增加工业AI模型精确度。
4.3.3.中控技术:自研国内首个流程工业过程模拟与设计平台
APEX海量数据助力大模型训练从而优化工程装置。2022年11月,公司正式发布了自主研发的APEX,成为国内首个流程工业过程模拟与设计平台。其基于机理模型打通了工艺设计到工厂运行的数据流程,实现了工艺模拟、工艺瓶颈分析和运行优化等功能,提供从工程设计、工厂数字孪生、生产运行到全生命周期运维的智能化运营解决方案。通过APEX运行得到的海量数据也将投入AI大模型对装置进行优化,进一步提升工厂效率。
5.AI大模型背景下网络安全机遇与产业并存,各方加速布局
5.1.AI大模型催化,网络安全产业机会与挑战并存
5.1.1.“安全”、“AI安全”与“安全的AI”同等重要
网络安全威胁日益加剧。随着互联网应用普及化,所对应的网络威胁数目随之上升,而且其复杂性也相对增加,对网络安全带来了巨大挑战。如今移动设备、物联网、云计算在企业中的应用日益普及,攻击面也相对增加。此外,黑客可以利用人工智能来不断变形病/恶意软件,而传统的静态防御解决方案未必能对此有效检测以及阻断。另外,网络攻击服务化令网络攻击变得普及,攻击者自身不须拥有强大的黑客知识亦可以通过支付加密货币获得攻击工具。人工智能在网络安全方面的作用是帮助组织降低入侵风险,并改善其整体安全状况。人工智能通过从过去的数据中学习来识别模式和趋势,然后这些信息被用来预测未来的袭击。人工智能驱动的系统还可以配置为自动响应威胁,并在更快的时间内对抗网络威胁。随着企业攻击面不断发展和演变,时而必须处理多达数千亿的时变信号以正确地计算风险。为了应对这一前所未有的挑战,神经网络等人工智能工具和方法不断发展,以更有效和高效的威胁检测和威胁消除功能,帮助信息安全团队保护敏感信息、降低入侵风险、降低安全运营成本、改善安全态势。再者,随着大模型潮流兴起,网络安全的产品能力、平台运营能力以及安全服务都有望迎来全面的优化升级。
综上,新技术浪潮下的网络安全产业需要考虑四重安全。第一步是做好传统网络安全防护,第二类是用人工智能相关算法或大模型对网络安全产品进行增强,以及对服务的优化赋能。该阶段要保证AI大模型赋能网安的过程中,AI系统和网络安全产品的集成能有效融合。第三,要保证大模型输出的AI能力的原生安全。最后,大模型本身的安全防护也十分重要,因为其作为AI能力输出的基石,本身的安全稳定有着根本性支撑作用。
5.1.2.网络安全与人工智能技术结合具备天然优势
要弄清楚AI在网络安全领域中的作用,首先要回顾下网络安全产品本身的构建思路。网络安全的构建思路以红蓝对抗为角度,即根据黑客攻击的时间顺序来进行对应的防护。首先要进行最大化收敛互联网上的暴露面,第二步是对边界的防护,也就是根据暴露内容部署相应的安全问题防护以加固边界,接着要进行区域控制,即监控手段建设,最后一步是做强控。整个过程按照事前、事中和事后来建设网络安全。
网络安全单点产品的能力可以基于人工智能算法得到增强。前期的资产梳理、安全漏洞排查以及边界的防护方面,都需要防火墙、IDS/IPS等产品部署,而与传统的软件驱动或手动方法相比,机器学习技术可通过结合来自主机、网络和云上的反恶意软件组件的大量数据来改进恶意软件检测;深度学习使用大量数据来训练深度神经网络,此举也能助力防范各类攻击。比如Google利用深度学习来检测难以检测的基于图像的电子邮件、含有隐藏内容的电子邮件,以及来自新形成域的通信,这有助于检测复杂的网络钓鱼攻击,包括与垃圾邮件有关的互联网流量模式;深度学习架构可以用于发现隐藏或潜在的模式,并随着时间的推移变得更加环境敏感,这有助于识别零日漏洞或活动,例如自然语言处理可以扫描源代码中的危险文件并标记它们,“生成对抗网络”可以学习模仿任何数据分布,也可以在识别复杂缺陷方面有用。
5.1.3.大模型对网络安全产业的供给侧和需求侧带来巨大变化
大语言模型技术的广泛应用,能够赋能网络安全产业的诸多环节,甚至可能对部分环节带来颠覆性的改变。以GPT为代表的大模型的本质是理解语言意图并根据意图进行任务分配,从而实现对话、计算、制图等能力,具有语言体系且流程性工作的占比较大的工作环节能被大模型所赋能。同时,出于工程落地难度及性价比考虑,大模型更适合用于规模较大、所需人工较多的环节。从网络安全厂商供给能力来看,大模型的语义理解及代码生成等能力可以有效赋能安全产品及服务。网安的日志为计算机领域的语言体系,GPT在Github中预训练之后,对于日志的理解具有天然优势。同时,安全运营涉及大量流程性工作,部分环节人力需求较多,而大模型的应用有望在安全运营中心场景中降低安全服务人员的数量,实现降本增效。例如在用户行为分析方面,传统的SIEM是基于特征和规则进行分析,而用户行为超越了规则和相关性,可通过大模型的赋能研究攻击者行为模式,从而更加有效地检测内部威胁、针对性攻击和;又例如,在攻击者可以加密数据之前,SIEM可能会检测到勒索软件的警报并在受影响的系统上自动执行应对操作,大模型的代码生成能力可以提升系统的自动响应能力。
5.1.4.大模型输出的AI能力要有原生的安全性
虽然大模型能够带来网络安全性能的较大飞跃,但也要考虑大模型所输出的AI能力的安全性。大模型输出能力的安全性,即“安全的AI”,在其产业应用过程中跟传统网络安全防护同等重要,本质上是因为AI大模型作为一个工具,应当帮助人们而不是取代人们或对人类社会造成伤害。基于安全的大模型,其对传统网络安全的赋能的有效性才能得到充分保证。“安全的AI”思想是致力于构建安全的大模型,模型安全需要重点考虑三大因素。AISafety的具体内容包括:与人类意图对齐、可解释性、鲁棒性。其中,对齐要求AI系统的目标要和人类的价值观与利益相保持一致,但AI对齐的实现也存在三方面挑战,一是选择合适的价值观,二是将价值观编码到AI系统中,三是选择合适的训练数据;可解释性是指对模型内部机制的理解以及对模型结果的理解;鲁棒性可以理解为模型对数据变化的容忍度。
数据防泄漏是企业客户目前绝对的头号安全需求。三星半导体工厂的员工在将源代码输入ChatGPT以识别和消除错误并优化程序的同时,也无意中通过GPT向公众泄露了机密的生产数据,另一名三星员工使用AI聊天机器人总结会议记录,导致该会议记录被泄露。上述数据泄漏事件只是冰山一角,根据CYBERHAVEN在3月21日发布的调查,8.2%的员工在工作场合使用过ChatGPT,6.5%的员工曾经将公司数据粘贴进去过,3.1%的员工曾经将公司敏感数据喂给过ChatGPT,而敏感数据占员工粘贴总数据的11%。
5.1.5.大模型本身的安全防护也同等重要
在AI大模型的系统集成阶段,情况就变得更加复杂。人工智能应用的系统集成不仅涉及人工智能技术本身的安全风险,还涉及车载系统、网络、软件、硬件的结合点问题,这些威胁包括AI数据和模型的机密性、代码漏洞、人工智能偏见等。因此,针对大模型使用过程中的隐患点,海外已经出现了专注于大模型的防火墙公司。ArthurSheild是首个用于大语言模型的防火墙,帮助公司更快、更安全地部署ChatGPT等大模型应用程序,保障模型部署和运行安全。ArthurSheild能力可以包括:防止PII或敏感数据泄露、防止有的且攻击性的或有问题的语言生成、防止幻觉、用户恶意提示以及防止恶意注入。
大模型除了需要传统的企业安全堆栈保护,还有一些区别于其他软件开发公司的安全防护需求。在传统保护方面,比如使用Cloudflare、Auth0来管理流量和用户身份。ChatGPT在三月份经历了RedisBug导致的信息泄漏和宕机,这就产生了对例如Datadog和SumoLogic等APM、可观测性供应商的需求。大模型还有一些区别于其他软件开发公司的安全防护需求,比如Prompt注入攻击等,则对安全公司提出了更高的要求。海外已出现许多专注于SecurityforAI的公司,比如HiddenLayerMLSEC平台是一种基于软件的非侵入式平台,主要用于监测机器学习算法的输入和输出,可以阻止对抗性攻击并提供对ML资产的健康和安全的可见性。平台基于不需要访问客户数据或知识产权的云架构,在不影响速度、效率和可靠性的情况下保护客户的ML资产。同时,平台可帮助客户维护ML算法,保护其免受推理、数据中、逃避或模型注入等攻击,并防止敏感训练数据被公开。
5.2.AI网络安全市场高速增长,海外巨头布局迅速
全球AI网络安全的投资呈现高速增长态势。物联网的日益普及、对数据保护的担忧不断增加以及网络攻防对抗持续升级等因素推动着AI在网络安全行业的发展,越来越多的网络安全厂商加大对AI安全市场的投资力度,抢占“AI+安全”制高点。MarketsAndMarkets调研数据显示,2023年AI在网络安全市场规模为224亿美元,预计到2028年将达到606亿美元,CAGR为21.9%,同时,MarketsAndMarkets认为在预测期内,北美将占据AI网络安全市场最大份额。
海外头部安全厂商也持续加码AI相关产品应用。IBMSecurityQradarSuite产品嵌入AI和自动化,加快了安全团队对攻击链每个步骤的响应速度;CrowdStrike公司与Cribl联合推出CrowdStream,旨在提供更加快捷和准确的网络安全数据采集与分析;Fortinet打造的FortiXDR是首款利用AI进行事件调查响应的解决方案,可以完全自动化完成通常由经验丰富的安全分析人员处理的安全运营流程,因而能够跨广泛的攻击面更快速地缓解威胁。
5.3.国内厂商AI能力积淀已久,大模型方向纷纷加码
5.3.1.奇安信:把握AI新机遇,深入探索网络安全蓝海
把握新技术浪潮,推出最贴合市场的新产品和新服务。针对生成式人工智能技术,公司结合“内生安全”理念,利用多年以来的海量安全大数据和知识积累,积极训练专有的类ChatGPT安全大模型,计划在安全产品开发、威胁检测、漏洞挖掘、安全运营及自动化、攻防对抗、反病、威胁情报分析和运营、涉网犯罪分析等领域实现广泛应用。奇安信在AI技术赋能安全方向成果颇丰,其研究成果广泛应用于公司产品中,在数据挖掘、异常检测、复杂网络分析中都成功使用了深度学习和机器学习技术。
5.3.2.深信服:AI布局前瞻,大模型领域先发优势显著
坚持AIFirst理念,以AI技术研究及应用赋能云产品升级。公司采用“AIFirst”理念构建云全产品体系,超融合、托管云服务、桌面云、存储和数据库管理均需用到AI技术。基于该新推出的全新产品体系架构,可以全面提升性能、可靠性、安全和运维管理方面的能力,并把这个能力称为AFOPS、AIRUN和AISEC。AISEC保证上云即安全;AIRUN使得客户使用云的时候更加方便、有效、快捷;AIOPS使得使用云的时候维护能力提高,自动化的水平提高,而不再需要更多的人力。
5.3.3.天融信:AI与产品深度融合,竞争力持续提升
创新融入AI,持续增强产品核心竞争力。天融信在AI安全领域布局较早,且早在2019年与IDC联合发布了国内首个《融入人工智能的下一代防火墙》白皮书。公司主要运用AI技术进行威胁情报分析、网络应用分类、未知威胁检测等,并已实际应用于公司产品,已发布的产品有防火墙、入侵防御、僵木蠕、沙箱、大数据分析、态势感知、EDR、数据防泄漏等。2022年订阅收入3.13亿元,其中至少一半来源AI生产的知识。同时,公司自2020年开始部署和使用类大模型,目前已训练出用于安全服务的基础模型,同时正在训练用于非核心模块的代码自动编写模型,提升开发效率。
5.3.4.绿盟科技:打造AI实验室,加码GPT智能应用
积极探索以AISecOps、SecXOps和安全知识图谱为代表的新型AI技术。公司于2016年成立了八大实验室,其中天枢实验室专注于AI方向的研究,积累深厚,目前已取得多项研究成果,包括:发布了安全知识图谱,推出了AISecXOps概念和产品,以及与高校研究机构合作发布了白皮书等。公司高度重视以ChatGPT、GPT-4.0为代表性的大语言模型对安全产业的影响力,开展了对安全攻防、安全运营、GPT内容识别等领域类GPT技术的研究;凭借长期积淀的攻防知识、运营数据与威胁情报,将在2023年第三季度发布基于类GPT技术的智能安全服务机器人,旨在把大模型能力用到代码安全、安全运营效率提升、安全分析研判准确度提升等方面。
5.3.5.安恒信息:数据安全体系完备,AI赋能下优势凸显
安恒的大数据及数据安全相关产品广泛使用了AI技术,产品力逐年提升。数据安全是安恒的重大战略方向,而数据安全与人工智能也具有天然的结合性,公司常年来的产品打磨中均有效利用了AI技术优势,产品力持续提升,尤其体现在AiSort数据安全分级、AiMask数据脱敏、AiGate数据安全网关、AiThink行为分析以及AiTrust零信任等产品体系中。
5.3.6.启明星辰:“盘小古”助力AI安全研发运营一体化
人工智能赋能安全一直是启明星辰重点探索的方向。公司自主研发的人工智能安全建模和赋能平台,被威胁检测、安全大数据分析、威胁情报、UEBA等多个产品广泛采用,全面提升了安全数据治理、安全模型构建、模型安全检测、模型推理赋能等能力,实现了基于ModelOps和AIOps的人工智能应用快速搭建、模型全生命周期管理和多重赋能,助力流量检测技术、威胁检测技术等实现智能化,推动公司网络安全产品向自动化、智能化进阶。启明星辰于2022年发布了“PanguBot(盘小古)”安全智慧生命体。公司基于人工智能技术的智能化安全运营解决方案,构筑了以全生命周期人工智能安全服务、运营为目标的AI安全研发运营一体化平台。“PanguBot”由启明星辰盘古人工智能平台提供模型运行算力和环境,以Chat为窗口,应用基于安全运营专用语料库训练的自然语言模型,能够接收文字、语音、图片、视频等方式的信息输入,通过文字和图片的形式向用户反馈,并能够整合各种运营工具,实现安全分析处置自动化,此成为启明星辰智能化安全运营的有力支撑。
精选报告来源:。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。