人工智能:ChatGPT爆火带来思考:医学界或将迎来与AI融合的奇点

ChatGPT犹如一枚石子不经意地投入到人工智能行业平静的水面,迅速在全球范围内激起一波大浪。?

AI翻译、AI绘画、AI家居……如今,人工智能已经跨入各个领域,与人们的生活越来越近,这类看似无所不能的新一代人工智能,能否与医疗领域相结合,从而促进医疗行业的跨越式发展,给人类带来福音呢??

微软创始人比尔·盖茨在不久前表示,ChatGPT等新型聊天机器人能够不断地进行训练、改进并进行读写。因此ChatGPT等人工智能可以为阅读和写作提供优化,并在医疗保健和教育等领域切实提高工作效率。而医疗健康行业确实存在着一些值得注意的、长期存在的问题,包括资源不足、工作流程的低效、不公平以及患者与临床医生之间沟通的时间不足等问题。渴望改进的医疗行业领袖和计算机科学家对此充满信心,他们认为人工智能在解决这些问题方面将发挥重要作用。?

智能医疗正在成为未来趋势

实际上,人工智能早已走近医疗领域,技术研究、生物制药、临床诊断等多个环节都能看到人工智能的身影。医疗界早已达成共识,认为智能医疗将成为未来医疗行业的重要风向标。?

Lookonchain:疑似孙宇晨钱包在USDC脱锚期间赚取超330万美元:3月15日消息,Lookonchain监测数据显示,疑似孙宇晨的钱包在USDC脱锚期间赚取了超过330万美元。0xbcb7开头地址在USDC脱锚后从Aave取出了5000万枚USDC并1:1兑换成DAI,之后从币安取出USDC同样兑换了DAI。然后该地址又从币安提取了2.149亿枚USDT,将其中的1亿枚USDT兑换成1.033亿枚USDC,7500万枚USDT兑换成7550万枚DAI,再将所有USDC兑换成DAI。

USDC恢复锚定价格后,该地址用3000万枚DAI兑换了3000万枚USDC、用USDT购买了2000万枚USDC,并将总计5000万枚USDC转入地址“0x30Dff”,而这个地址此前曾收到过孙宇晨1亿枚USDC。链上数据显示,整个操作不仅避免了USDC脱锚损失还赚取了超过330万美元。[2023/3/15 13:05:41]

而此次ChatGPT走红,是否代表着医疗行业和AI融合迎来了奇点??

在美国,执业医师资格考试向来以难度大、专业性强而著称,这建立起美国医生群体从业的高门槛,但ChatGPT无需经过专门训练或加强学习就能通过或接近通过这一考试。这是人工智能在临床医学应用方面“值得注意的一件大事”,显示“大型语言模型可能有辅助医学教育、甚至临床决策的潜力”。?

同样的,谷歌公司一款名为Med-PaLM的人工智能医疗助手“能够向患者提供和专业全科医生一样好的建议”。随着技术不断发展,“我们可能很快会从‘谷歌医生’或‘必应护士’那里得到医学方面的建议”。?

CoinBene满币与新加坡量化公司Chainwave达成战略合作:据官方消息,CoinBene满币已与新加坡知名量化公司Chainwave达成战略合作,Chainwave将为满币现货及合约业务提供流动性。

Chainwave成立于2016年,旗下业务包括加密货币量化投资,交易所做市商业务及矿业服务。

CoinBene满币是值得信赖的数字资产交易平台,在全球180多个国家和地区拥有500多万用户,日活跃用户数超10万,日均交易额30亿美元。2019年初,平台战略布局合约衍生品市场,主要为投资者提供以BTC、USDT进行结算且安全、稳定的永续合约服务。[2020/9/10]

在医学领域,人工智能已经开始在三个层面产生影响:临床医生:人工智能可以帮助他们更加快速、准确的解读图像、医学数据;医疗健康系统:人工智能可以改进工作流程,降低医疗潜在的错误;自然人:在健康管理中,人工智能可以帮助人们更好的检测身体数据,从而改善健康状况。??

人工智能已经走进医疗领域,智能医学正在成为趋势,未来将会有更多的新医疗服务模式依赖于人工智能工具。可访问的数据、高质量计算能力,以及机器的自学习能力相结合,将会为人类生活质量的提高带来更大可能性。?

声音 | Pierre Rochard:比特币不是投资而是投机:比特币爱好者Pierre Rochard发推称,比特币不是投资,而是投机。投机本身并不是坏事,它只是意味着你没有为制造一种好的产品或服务提供资金。当一种事物的使用急剧增加时,投机它是有意义的。[2018/11/8]

人工智能促进医疗模式改变

医疗行业复杂程度高,涉及知识面广,但人工智能可以在多个环节发挥作用。这主要得益于,在信息网络条件下,越来越多的智能终端和传感器的广泛运用产生了大量数据,为人工智能医学的研究和运用提供了源源不断的养分。这不仅给医疗领域本身带来了一场新技术革命,更促进了医疗服务模式的改变。?

当前人工智能可以在运营、预防、检查、诊断、治疗和康复等全健康管理环节,以及药品研发、医疗器械生产等方面都有不同寻常的运用。?

在疾病预防方面,人工智能优于医生的地方在于,在长时间盯着屏幕后,人工智能不会像人类一样不自觉地感到厌倦。另一方面,即使在很理想的条件下,人类也可能会忽略扫描图片中微小的癌变碎片。而人工智能则不会有这样的担忧,他们可以做到既精准又高效。?

利用人工智能技术,可以高效预测阿尔兹海默病风险、心血管疾病风险、癌症风险、精神疾病等等。这些预测能够帮助人们防控公共疫情,协助个人提升健康水平。?

实际上,目前人工智能最为成熟和广泛运用的领域是图像识别。最近几年,人工智能图像识别技术快速发展,在某些特定领域甚至已经超过人类。在视网膜图像识别、甲状腺超声影像诊断、肺结节影像检测、CT影像识别等领域,人工智能的机器读片在时间和准确率上已经超过了部分医生。人工智能作为辅助工具,可以节约医生大量的时间,提高医生的工作效率,为解决基层医疗资源不足的难题提供了新思路。?

动态 | Chaincode Labs主导创建论坛解决比特币扩展问题:据由Chaincode实验室的开发人员John Newbery和James O'Beirne发起,比特币Optech20日宣布创建一个论坛,比特币开发商和公司可以通过研讨会和在线讨论聚集在一起,以协调解决扩展问题。[2018/7/20]

更加不可思议的是,在诊疗方案的提出上,人工智能还能模拟医生的思维和诊断的方式、习惯和依据,融合自然语言处理、认知技术、机器学习等技术,充当“人工医生”,可以在较短时间内提供精准的诊断结果和个性化的治疗方案,供医生参考借鉴。?

在健康管理方面,随着可穿戴设备和家庭健康监测设备的研发和应用,个人健康数据从过去的静态监测变成了动态监测。人工智能可以从这些动态数据中,分析判断个人的健康水平,并给予血糖、血压、血脂,用药等方面的指导。?

人工智能除了监控疾病信号外,还可以提供个性化预警,新一代人工智能甚至会进化为个体化的健康管家。在医疗器械的改进和生产上,人工智能可以对医疗器械应用全过程进行智能分析,让医疗器械的研发和使用更加符合实际。?

TechCrunch创始人Michael Arrington布局区块链,以顾问身份加入新加坡团队CNN Token:据悉,美国著名科技类博客TechCrunch创始人Michael Arrington近日加入CNN Platform项目并担任顾问,指导该项目的区块链技术应用以及内容运营。Michael Arrington是TechCrunch的创始人,曾被《时代》杂志誉为全球最具影响力的人物之一。CNN Platform是由新加坡D-Run Foundation基金孵化的区块链项目,旨在打造最大最具影响力的内容生态社区。此前,印度排名第一的新闻应用NewsDog也与CNN Platform达成战略合作,并成为该项目上的第一个实际应用。[2018/2/26]

综上分析,从“经验医学”到“循证医学”再到“智能医学”,深入医疗行业全链条,人工智能正在促进医疗模式的改变,新技术、大数据的应用,将进一步助力人类战胜疾病,管理健康。?

不过值得一提的是,虽然人工智能在医学领域开展了越来越广泛的应用,但不可否认其仍然存在局限性,包括ChatGPT在内的工具并不完美。在丁香园所开展的《关于ChatGPT与专业医生在线问诊能力的比较研究》中,ChatGPT与专业医生回答情况对比,在医学专业性上的主要差异在于:缺少对于患者病史有针对性的追问、对专业医学名词解释错误、诊疗方案不全面或有误、对患者的建议不够具体等问题。而在服务性审核结果中,ChatGPT的表现略好,但依然存在对患者的建议不够具体,几次回复结果不贯通等问题。?

但我们依然相信,随着科技与医药行业的融合,海量的医疗信息数据持续积累,这是民族医疗健康企业自主创新、蓬勃发展的富矿。依托于中国市场的巨大优势,越来越多企业利用AI技术提升医疗服务效能,能够带来巨大的行业价值和社会价值。?

人工智能,为医疗创新而来

显然,人工智能技术正在为医疗的各个方面带来革命性的影响,并将扮演重要的角色。人们期待着医学的发展,更先进的科学技术将叩开人类健康更高的大门。?

在国内,有一批将人工智能应用于医疗领域的高科技企业,已经逐渐成长起来。比如,专注于消化道健康领域创新医疗器械研发、生产、经营的高新技术企业安翰科技,已经可以为消化道疾病无创筛查、早期诊断、精准治疗等提供全新的解决方案。?

在安翰科技投入的领域中,人工智能技术的融入为消化道疾病诊断带来了两个突破:一是前向应用,检查过程中自动实时识别病灶,提示检查人员进行重点检查拍摄,为检查的精准度和完整性上了一道智能保险;二是后向应用,在阅片过程中,对医学图像进行精准分类,快速分离病变异常图像,辅助医生分析诊断。?

比如小肠疾病检查一直是常规内镜和放射学检查的难点,胶囊内镜的出现彻底改变了这一现状。在临床应用中,由于小肠生理结构长、病灶种类多、每例小肠胶囊内镜检查拍摄的图片数量达到2万张,产生的视频长达8-10个小时,面对海量医学影像,医生如何准确快速完成阅片诊断是胶囊内镜临床使用的瓶颈问题。因此,迫切需要一种创新的工具和方法提高小肠胶囊内镜的临床检出率和效率。?

2019年10月,《胃肠病学》重磅刊发安翰科技人工智能辅助阅片系统的临床应用研究成果,这是全球首次将人工智能技术应用于胶囊内镜小肠检查,也是在世界医学界,中国人工智能技术在胶囊内镜小肠检查中应用的首次亮相,获得该杂志主编高度评价:“开启了小肠疾病诊断的新纪元”。?

具体来看,使用深度学习模型的胶囊内窥镜对小肠疾病和黏膜正常改变的胃肠病专家级临床识别,是由华中科技大学同济医学院附属协和医院侯晓华教授、蔺蓉教授团队和安翰科技的3位技术专家共同完成,安翰科技为研究提供了算法和基于深度卷积神经网络的AI模型以及ESView数据平台的技术支持。?

这个研究成果,安翰科技使用卷积神经网络训练了一个基于深度学习的AI模型,来区分胶囊内镜检查中的异常图像和正常图像,以协助分析评估小肠胶囊内镜图像。临床研究数据集来自77家医疗中心的6970例113,426,569张胶囊图像;在训练阶段,用1970例患者的158,235张胶囊图像建立模型;在验证阶段,用5000例患者的113,268,334张胶囊图像验证模型。?

从效果上看,人工智能辅助识别显著提高了小肠病灶的临床检出率,大大提高了异常图片识别的灵敏度。经过大样本、多中心数据验证:经AI辅助后,每例小肠胶囊内镜检查所需要的平均阅片时间由96.6分钟大幅缩短为仅需5.9分钟,对病灶的诊断灵敏度由76.89%提升为99.9%。?

安翰科技将人工智能技术应用于小肠病灶筛查,不仅实现了胶囊内镜应用的智能辅助,还极大程度地改变了小肠疾病的诊断模式,具有重大的临床和社会价值。?

2019年,美国消化内镜学会GIE编委会评选出2019年度消化内镜领域十大进展,AI辅助诊断创新研究成果以评委全票通过的优势,获评榜单第二名。编委会表示:“该系统是人工智能作为颠覆性技术的非凡示范,将胶囊内窥镜检查提升到一个新的水平。”?

总结

我国陆续发布了多条全国性政策和医疗人工智能专项政策并上升为国家战略,中国人工智能医疗行业发展有望进一步提速。将人工智能与医生智慧、临床经验有机结合,将帮助中国患者从健康科普、就医决策到医疗服务等方面,建立起完整的一站式健康管理服务,并为医疗机构和医疗从业者提供定制化“数智”解决方案。?

期待在不久的将来,更多的人工智能创新成果可以应用于医学,有效的助力医疗机构降本增效,提升诊疗水平,更好的服务患者,提升全人类的福祉。?

来源:元宇宙之心

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

地球链

[0:15ms0-1:26ms