FTX:你可能不知道隐藏在杨辉三角形中的 10 个秘密!

文章来源于遇见数学,作者遇见数学翻译小组

翻译:姚高华校对:李千蔚

英文:https://sourl.cn/qZZiVA

杨辉三角形,又称帕斯卡三角形、贾宪三角形、海亚姆三角形,它的排列形如三角形。因为首现于南宋杨辉的《详解九章算法》得名,而书中杨辉说明是引自贾宪的《释锁算书》,故又名贾宪三角形。古代波斯数学家欧玛尔·海亚姆也描述过这个三角形。在欧洲,因为法国数学家布莱兹帕斯卡在1653年的《论算术三角》中首次完整论述了这个三角形,故也被称作帕斯卡三角(Pascal'striangle)。

杨辉三角的前10行写出来如下:

杨辉三角的构建

在最上面一行的中央写下数字1第二行,写下两个1,和上一行形成三角形随后的每一行,开头和最后的数字都是1,其他的每个数都是它左上方和右上方的数之和,就是说除每行最左侧与最右侧的数字以外,每个数字等于它的左上方与右上方两个数字之和。

3小时前,Curve创始人再向4家投资者/机构出售逾3400万枚CRV:8月4日消息,据链上分析师余烬监测,3 小时前,Curve 创始人再向 4 家投资者/机构出售 3402.5 万枚 CRV:

2500 万 CRV → Wintermute (也可能是委托 Wintermute 购买的投资者/机构)

625 万 CRV → Gnosis Chain

250 万 CRV → Reserve

27.5 万 CRV → Llanero。[2023/8/4 16:18:01]

左对齐后的杨辉三角

前两列倒没什么特别的地方,第一列均为1,第二列则为自然数。而第三列就是三角形数(Triangularnumber)。你可以想到,三角数就是能够组成大大小小等边三角形的点的数目,如下图所示。

Open Campus DAO正式成立,EDU持有者将可参与社区治理:6月16日消息,Web3教育协议Open Campus宣布成立Open Campus DAO。EDU持有者可通过提案流程参与DAO的治理。

此外,Open Campus DAO内设理事会,Animoca Brands创始人Yat Siu等5人担任理事会成员,负责审查和验证EDU持有人提交给理事会的提案是否符合DAO治理框架下标准所要求的标准,以及管理和监督EDU代币持有人成功批准的提案的实施等。[2023/6/16 21:42:00]

三角形数(图自维基)

类似地,第四列是四面体数(Tetrahedralnumber),也叫三角锥体数。顾名思义,它们代表由三角形构成的四面体所需要的点的数目,四面体数每层为三角形数。

美国国税局与Chainalysis和乌克兰合作,追踪俄罗斯加密货币制裁的逃避者:5月11日消息,美国国税局刑事调查部门正在与区块链分析公司 Chainalysis 和乌克兰调查人员合作,追踪在俄罗斯入侵乌克兰后可能使用加密货币隐藏其资产的俄罗斯个人。美国捐赠调查工具的许可证并举办培训,目的是改善美国和乌克兰之间的信息共享。[2023/5/12 14:58:24]

图自维基

秘密Billions项目组3:11的幂

杨辉三角还揭示了11为底的幂的值。你要做的就是将每一行的数字挤压到一起。前5行足够简单,但出现两位数的时候该怎么办呢?

淡马锡:在加密货币方面没有直接敞口 曾花费8个月尽调显示FTX盈利:11月17日消息,淡马锡发布《关于FTX的声明》,淡马锡表示,从2021年10月到2022年1月的两轮融资中,淡马锡投资2.1亿美元购买FTX International约1%的少数股权,并投资6500万美元购买FTX US约1.5%的少数股权。

截至2022年3月31日,FTX的投资成本占我们投资组合净值4,030亿新元的0.09%。鉴于FTX的财务状况,淡马锡决定减记对FTX的全部投资,无论FTX破产保护申请的结果如何。在对FTX做尽调方面,从2021年2月到10月,花了大约8个月的时间,审查了FTX的审计财务报表,显示其是盈利的;

此外,重点关注与加密货币金融市场服务提供商相关的监管风险;收集了对公司和管理团队的定性反馈。投资后,淡马锡也持续在做业务战略管理和业绩监控。但消除所有风险并不切实可行。从这笔投资中可以明显看出,\"我们对Sam Bankman-Fried的行动、判断力和领导力的信念似乎是错误的。\"[2022/11/17 13:15:24]

事实证明,你要做的就是将十位数加到它左侧数字上,比如下图所示的是第六行中出现了上面的情况,如何进行移动以获得11的值

萨尔瓦多总统:大多数精英人士害怕萨尔瓦多参与的比特币实验成功:金色财经报道,萨尔瓦多总统Nayib Bukele表示,如果萨尔瓦多参与的比特币实验成功,世界上许多国家将步这个拉美国家的后尘。Bukele在最近撰写的一篇名为“停止饮用精英的 Kool-Aid?”的评论社论中表示了这一点,该社论于 2022 年 9 月 30 日以英语和西班牙语出版。在社论中,Bukele批评了三个批评者阵营,他认为他们中的大多数人只是害怕萨尔瓦多的创新决定。

Bukele表示,最直言不讳的批评者,那些害怕并迫使我们改变决定的人,是世界上有权势的精英以及为他们工作或从中受益的人,他们曾经拥有一切,而且在某种程度上他们仍然拥有;媒体、银行、非政府组织、国际组织以及世界上几乎所有的政府和企业。[2022/10/10 12:51:11]

如果出现了三位数同样进位处理即可。

秘密Billions项目组5:斐波那契数列

为了揭示隐藏的斐波那契数列,将左对齐的杨辉三角对角线相加。比如下图杨辉三角中发现的斐波那契数列前九个数:1,1,2,3,5,8,13,21,34…

按线条所示相加结果即为斐波那契数列(图自维基)

秘密Billions项目组7:组合数学

或许杨辉三角中发现的最有趣的关系就是我们如何利用它找到组合数。

杨辉三角的前六行写成组合数的表达形式

回忆一下从n个不同元素中选k个元素的组合公式。我们发现,对于杨辉三角中的每一行数字,从零开始计数,n是行数,k是在这一行中的位置。

所以,如果你想计算4选2,看第5行,第3个数,你会发现,答案是6.

秘密Billions项目组9:二项式定理

(x+y)的幂运算是很酷,但我们多久才会需要解这样的题呢?很有可能,不太经常需要。如果我们能够从上一个章节的结论中总结出一个更有用的形式,会不会更方便?好吧,其实这就是二项式定理:

这个公式也称二项式公式或二项恒等式。

秘密#10:与概率之间的联系—二项式分布

二项式分布描述了具有两种可能结果的实验的概率分布。事实上,杨辉三角的每一行也能揭示了这样的清晰,以最经典就是扔一枚硬币为例吧。

如果考虑抛3次硬币,就会有8种可能发生的事件:

但其实可以分为4类情况:

3次反面——只有1次发生2次正面和1次反面——有3次发生2次反面和1次正面——有3次发生3次正面——只有1次发生这注意1,3,3,1正是杨辉三角的第4行。同样如果抛5次硬币,出现3正2反的事情会出现10次,这也是出现在了杨辉三角第6行。

如果设抛硬币得到正面概率为p,反面概率为1–p。想知道扔到正面的可能性,我们可以使用二项式分布的概率质量函数找到概率的分布,其中n是试验次数,k是成功次数。

二项式分布的概率质量函数

嗨,这看起很熟悉啊!这几乎和我们前面提到的二项式定理是一样的公式,只是没有求和公式,同时和被和代替了。

假设成功的概率是0.5(p=0.5),我们计算扔到正面0次、1次、2次、3次的概率。

在公式中代入n=3、k=0,1,2,3,得到下面计算结果,请注意杨辉三角里的组合数:1,3,3,1:

扔到正面0次、3次的可能性都是12.5%,而扔到正面1次、2次的可能性都是37.5%,这与上面分析结果是一致的。

这便是看似简单的杨辉三角里的10个秘密,是不是很精彩啊!但这并非终点,它还有另外更神奇的性质隐藏其中,等待我们未来继续探索吧。

来源:遇见数学

编辑:他和猫

↓点击标题即可查看↓

1.套娃吗?你先看这个岛中湖中岛中湖中岛

2.都靠这位天才科学家20岁时的论文,你才能用手机拍照发朋友圈

3.朝天空开,子弹掉下来还有杀伤力吗?|No.206

4.乐高还能悬浮在半空中?上百万人已看懵!

5.古装片的射箭动作把物理学家看笑了,导演咱能不能专业点?

6.即使被它淹没也不会窒息,这是什么神奇液体?

7.数学课上捡了个橡皮,勾股定理就看不懂了

8.物理学写给你的情书

9.唯一两次获得诺贝物理学奖的人,你却不一定认识他

10.妈妈问我的桌子为什么这么乱!

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

地球链

以太坊交易所数字货币:数字货币“新”在何处?

来源:贸易金融 作者|盘和林 来源|广州日报 中国人民银行数字货币研究所相关负责人近日表示,目前数字人民币研发工作正在稳妥推进。这引发了民间对数字货币的属性以及应用的广泛猜想.

[0:15ms0-0:376ms