原文标题:《AcomparisonofzkEVMs》
原文作者:DanielLubarov?
原文编译:Kxp,BlockBeats
随着「zkEVM战争」的升温,公众讨论了许多关于不同zkEVM的优点。但也存在一些错误的信息,因此我们想澄清一些关于PolygonzkEVM以及它与其他项目的比较的事实。
作为Polygon的一名员工,我有偏见,但我会尽力保持比较公正。我主要关注Polygon的zkEVM和zkSyncEra,因为它们已经投入生产使用,并且我不太了解其他zkEVM项目。
zkSync的zkEVM和证明器由100?k多行代码组成。我尽力提供准确的摘要,如果有任何不准确之处,请告诉我,我会进行更正。
EVM兼容性
金融科技公司TrueLayer将为Coinbase支付提供支持:金色财经报道,金融科技独角兽TrueLayer正在与Coinbase合作这是对数字资产更广泛推动的一部分,TrueLayer希望在其以加密货币为重点的产品中增加一个稳定币产品。通过与Coinbase的合作,英国用户将能够把他们的银行账户直接链接到Coinbase,通过银行应用程序进行认证,然后确认付款。这将在未来几个月内逐步推广到整个欧洲。(the block)[2022/11/17 13:17:41]
PolygonzkEVM直接执行EVM字节码。根据Vitalik的分类,它是一种类型3的zkEVM。很快它将成为类型2?;目前我们缺少四个预编译。Scroll也在努力向类型2zkEVM发展。
相比之下,zkSyncEra使用不同的字节码格式,通过提供编译器来支持Solidity。这使它成为一种类型4的zkEVM:它支持Solidity,但不支持EVM字节码本身。例如Hardhat这样的工具不能直接使用,尽管可以使用zkSync的插件。
花旗:DLT在金融市场基础设施和全球市场参与者中正变得越来越主流:金色财经报道,根据花旗的第二份证券服务演进白皮书,分布式账本技术 (DLT) 在金融市场基础设施和全球市场参与者中正变得越来越主流。
大多数接受调查的人(88%)告诉花旗,他们的组织正在积极参与或探索数字资产或 DLT。更大的比例(92%)表示代币化有利于市场流动性和可交易资产的多样性。
超过一半的人表示,基于分布式账本技术的市场基础设施可以将交易后处理成本降低 10% 至 30%。此外,79% 的受访者表示原子解决可能会在不到 10 年的时间内实现。[2022/11/5 12:20:30]
zkSync认为他们的zkVM更加具有未来性,即它可以更好地与Solidity以外的语言配合使用。但是,他们的VM似乎继承了EVM的许多性能特征,例如其256位字大小。像Miden这样的zkVM可能更具有未来性,因为它是为通用计算而设计的,而不是专注于Solidity。
消费金融应用Telda完成2000万美元种子轮融资:10月12日消息,消费金融应用Telda宣布完成2000万美元种子轮融资,Global Founders Capital (GFC)、红杉资本和Jack Dorsey的加密公司Block(原 Square)参投。据悉,Telda已经获得了埃及中央银行 (CBE) 的许可,将以数字形式发行银行卡并提供客户服务。(TechCrunch)[2022/10/12 10:32:44]
性能
性能一直是Polygon的重点,我们的zkEVM非常高效。在CPU上运行我们的证明器的成本大约为每笔交易0.000084美元。
虽然我们没有找到任何关于zkSync的zkEVM的工作基准,但我们怀疑由于我们非常不同的ZK技术选择,存在着很大的性能差距。
域选择
美股三大股指集体高开 标普500指数涨0.85%:行情显示,美股三大股指集体高开,道指涨0.55%,纳指涨1.22%,标普500指数涨0.85%。[2022/5/21 3:31:45]
经过研究多个替代方案,我们选择了所谓的Goldilocksfield,一个二阶巨大素数域?2?^?64-2?^?32+1?。它的小尺寸和美丽的二进制结构导致了极快的域操作,乘法仅需在现代CPU上花费不到两个周期。
zkSync采用了更传统的方法,使用基于alt-bn?128曲线的SNARK。基础域的大小约为254位,域乘法在CPU上需要大约80个周期。
为了感受到这种巨大差异的影响,我们可以看看Celer的SHA?2基准测试。在那里,我们的STARK证明器比基于椭圆曲线的证明器快了5-50倍。
alt-bn?128的优点在于EVM原生支持它,因此向Ethereum提交证明更简单。在Polygon,我们将最终的聚合证明用alt-bn?128的fflonk证明「包裹」起来。虽然我们的方法需要更多的工作,但我们认为这对于不可思议的性能增益来说是值得的。
算术化
区别不止于此。我们的zkEVM基于STARKs构建,但具有现代化的变化。我们有一个主STARK用于CPU,还有其他用于算术、哈希等的STARK。这些表格可以连接,就像我们在RapidUp中描述的那样。这类似于物理CPU,它们经常有协处理器来加速渲染、Crypto或ML推断等密集操作。
以Keccak为例。由于它在EVM应用中被广泛使用,我们设计了一个专门的STARK用于它,使用了一些我们在这里记录的新技巧。设计这样的定制算术化需要大量的工作,但它带来了回报,使我们能够每秒证明数百个Keccak排列。
zkSync采用了我称之为更传统的方法。他们使用基于PLONK的证明器,尽管它支持自定义门,但他们的zkEVM并没有多少使用;大多数计算都是使用一个名为SelectorOptimizedWidth?4?MainGateWithDNext的通用门进行的。它似乎比vanillaPLONK门稍微强大一些,但仍然局限于像mul-adds这样的简单操作。
值得赞扬的是,zkSync使用了查找参数,这是一种更现代的技术,可以帮助提高像Keccak这样的效率。但是,没有自定义算术化,?256位数学、Keccak等等的效率都会大打折扣。
安全性
Polygon非常重视安全性,我们的zkEVM经过了两次独立审计:一次是由Spearbit进行的,另一次是由Hexens进行的。两份报告都可以在这里公开查看。我们还发布了验证部署的说明。
我们不知道zkSync的zkEVM是否经过任何公开审计。zkSync的网站列出了桥接合约的审计,但没有zkEVM本身的审计。
除了审计外,两个项目都有各种「安全备胎」,以提供备用的安全层,但这是一个很深的话题,我在这里不会详细介绍。
L1数据
PolygonzkEVM将所有交易数据发布到L1。在Twitter上存在一些关于此的混淆,有关此的Gas费用请参见Edu的文章。目前,平均交易大小约为120字节,因此每笔交易的Gas费用约为120*?16?=?1920?Gas。
zkSync则发布状态差异。恶意的序列化器可能会隐瞒交易数据,但zkSync认为拥有当前状态的trie足以确保安全。这似乎存在争议,因为通常预期交易数据是可用的,并且某些应用程序依赖于此。
查看经过更正的数据后,我们可以发现我们的zkEVM和zkSync的每笔交易Gas费用基本相同。这些数字可能会随着每个链上发生的交易类型的混合而随时间变化,但截至今日,状态差异并没有节省任何Gas费用;两个系统都向L1发送大约120字节的每笔交易数据。
我们计划在这里进行一些优化,但不使用状态差异。交易本身可以进行压缩,降低Gas费用,同时仍能保证交易数据的可用性。敬请期待!
原文链接
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。