ACMCSS被称为计算机安全四大顶会之一,本次ACMCSS2022「DeFi与安全」主题Workshop共计收录10篇论文,大体上分为MEV、DeFi的博弈论与机制设计、AMM三个主题,作者大多来自于哥伦比亚大学、康奈尔大学、苏黎世联邦理工、斯坦福大学、贝尔实验室、Jump、a16z等顶尖高校和机构,其中作者还有「欧洲顶尖科学家」等等。
一、主题:MEV
1.通过MEV再分配提高PoS经济安全
作者:
TarunChitra(Founder&CEOGauntlet)
KshitijKulkarni(PhDUCBerkeleyEECS,ResearcherGauntlet)
摘要:
最大可提取价值通常被视为寄生在链上交易的负面因素,会增加用户的交易成本。然而最近的研究工作表明,MEV并不总是对加密网络不利。
这篇论文证明了如果PoS协议中的理性验证者能够通过称为「MEV再分配」的过程赚取MEV收入的一部分,那么他们将不会被激励而取消质押,进而降低系统经济安全性。
作者构建了一个联合Staking-Lending动态系统,其中一部分MEV收入用于增加Staking回报。论文证明,这种「MEV再分配」可以避免质押和借贷之间的「不良竞争平衡」,并进行数值模拟来证明这一点。这表明了MEV的另一个潜在的正外部性,前提是「MEV再分配」机制设计良好。
2.使用交易价值和延迟进行战略对等选择
作者:
KushalBabel(PhDCornellUniversity,Researcherjump_crypto)
哥伦比亚大学计算机科学系教授Tim Roughgarden加入a16z加密团队:2月26日消息,a16z合伙人Chris Dixon表示,哥伦比亚大学计算机科学系教授Tim Roughgarden作为研究合作伙伴,加入a16z加密团队。[2021/2/26 17:56:04]
LucasBaker(Researcherjump_crypto)
摘要:
许多区块链利用公共对等式(peertopeer)网络进行交易通信。随着基于区块链的DeFi协议活动增加,机器人和矿工的战略行为急剧增加,通常被最大可提取价值(MEV)的概念所捕捉。
虽然许多工作都集中在智能合约层或共识层产生的MEV上,但在这篇论文中,作者研究了战略代理如何通过网络对等点(peers)的最佳选择来最大化可实现的MEV。
具体来说,作者研究了如何通过交易本身的信息来增强现有的延迟优化定义和算法,以优化对等互连(peering)算法。为两类共识协议建模这个优化目标:
1)基于时间的协议
2)基于单一领导者的协议
作者提出了一种有效的本地算法来战略性地选择对等点,并在现实世界数据上评估这个算法,证明了它优于随机选择对等点或不利用区块链交易信息的基准算法。
3.MEV的价格:走向MEV的博弈论方法
作者:
BrunoMazorra(ResearcherBellLabs,PhDUniversitatPompeuFabra-Barcelona)
MichaelReynolds(fromUniversityCollegeLondon)
VanesaDaza(AssociateProfessorUniversitatPompeuFabra-Barcelona)
肖臻:矿机与通用计算机有着本质的区别 ?:2020年5月23日,由百团大战、节点咨询、金色财经主办,莱比特、算力360联合主办的百团大战矿业峰会·丰水期之战在成都开幕。在会上,北京大学计算系研究员肖臻表示:矿机跟通用计算机相比有着本质的区别。对于通用计算机来说,计算结果的正确性是第一位的,比如用于云计算的服务器或者像我们搞科研用的计算机,如果计算的结果是错误的,那危害是很大的,对科研工作有很强的误导,这样的计算机是没有用的。相比之下,如果矿机算出的结果是错误的,并没有太大的危害,因为很容易验证,错误的计算结果可以被丢弃掉。所以设计矿机芯片的时候运算速度是第一位的,精度反而是不那么重要了。这是跟我们传统做科学计算本质上的区别。肖臻研究员还指出,区块链技术在很多行业有巨大的发展潜力。虽然联盟链一般是不挖矿的,但是技术层面有很多相通之处,个人和企业的发展要和国家战略需求结合在一起才能真正发挥出作用。[2020/5/23]
摘要:
MEV通常是指特权玩家可以通过战略性地排序、审查和将交易置于区块链中来提取的价值。每个区块链网络,我们称之为域,都有自己的共识、排序和区块创建机制,从而产生不同的最优策略来提取MEV。理性参与者的战略行为导致MEV博弈在每个领域具有不同的影响和外部性。
考虑了几种能确定交易在区块中的是否包含及其位置的排序机制,以构建替代性博弈,进而组织MEV提取,并最大限度地减少负外部性,包括密封投标拍卖、先入先出和私人优先Gas拍卖等等。然而,迄今为止,尚未有人对MEV博弈做出足够正式和抽象的定义。
在这篇论文中,作者朝着MEV博弈的形式化迈出了一步,并比较了不同的排序机制及其外部性。特别是,作者试图将由普通MEV机会产生的博弈形式化,例如套利和三明治攻击。在定义这些博弈时,作者利用了一个理论框架,该框架为几个重要角色和概念提供了基础,例如searcher,sequencer,domain,bundle。作者还引入了MEV的价格作为MEV博弈无秩序状态的价格,提供了一种不同排序机制之间正式比较的度量方法。
声音 | Blockstream首席战略官:开发量子计算机的同时 ASIC芯片也会迎头赶上:在正在举行的莱特币峰会上,Blockstream首席战略官Samson Mow就谷歌研究人员提出的“量子霸权理论”发表评论称,“在开发量子计算机的时候,ASIC芯片也会得到发展。”此外,如果需要的话,甚至比特币的协议也可以通过一个软分支来实现协议变更,从而实现量子抵抗。因此,技术专家们采取这些措施时,不会引起市场或比特币效用的任何变化。[2019/10/29]
二、主题:DeFi的博弈论与机制设计
1.EVM还是不EVM:区块链兼容性和网络效应
作者:
RuizheJia(PhDColumbiaUniversity)
StevenYin(WorkingonScriptus,PhDColumbiaUniversity)
摘要:
作者研究了多链环境中区块链之间的竞争,一个处于优势的EVM兼容链与一个可替代EVM兼容链和一个EVM不兼容链共存。
虽然EVM兼容性允许现有的以太坊用户和开发人员更轻松地迁移到可替代L1,但EVM不兼容性可能允许项目能够建立更忠诚和「具有粘性」的用户群,进而建立更强大的生态系统。
因此,选择与EVM兼容不仅是一项技术决策,也是一项重要的战略决策。
在这篇论文中,作者开发了一个博弈论模型来研究这种竞争动态,并发现处于平衡状态时,新从业者/开发者倾向于采用占主导地位的区块链。为避免竞争失败,可替代区块链必须「直接补贴新入场的项目」或「提供更好的功能」,在实践中可以通过更低的交易成本、更快的最终确定性或更大的网络效应来形成。
作者发现,EVM兼容的区块链通过直接补贴更容易吸引用户,而EVM不兼容的区块链通过提供更好的功能/产品来吸引用户更有效。
动态 | 俄国核工程师因盗用核工厂计算机挖比特币被罚款7000美元:据Bitcoinist今日消息,俄国核工程师Denis Baykov因非法使用Sarov核中心的超级计算机挖比特币而被罚款7000美元。[2019/10/1]
2.单项NFT拍卖机制设计框架
作者:
JasonMilionis(PhDColumbiaUniversity)
DeanHirsch(SeniorResearcherBigArch,PhDColumbiaUniversity)
AndyArditi(ResearchandEngineeringScroll,PhDColumbiaUniversity)
摘要:
最近NFT面向大众迅速普及。然而,典型的NFT拍卖程序以各种特殊的方式进行,同时大多忽略了区块链提供的环境,即新的可能性,同时也给拍卖设计带来了新的挑战。
这篇论文的主要目标之一是阐明NFT拍卖机制目前尚未开发的设计空间,特别是在那些与传统和同期的拍卖形式根本不同的特征方面。作者专注于投标人对拍卖的NFT进行估值的情况,即单项NFT拍卖情况。
在这种情况下,作者定义了一个NFT拍卖机制,给出了理想中的一个完美的机制来满足的属性,并证明不可能有这样一个完美的机制。尽管我们不能拥有这样一个全能的协议,但我们可以继续考虑我们可能希望协议满足的那些属性的宽松概念,作为可实施性和经济保证之间的权衡。
具体来说,作者定义了均衡真实拍卖的概念,只要交易对手真实行事,卖方和投标人都不能通过不真实的行为来提高其效用。作者还定义了渐近的第二价格拍卖,与理论上最优的第二价格密封投标拍卖相比,卖方不会渐近损失任何收入,在这种情况下,投标人估值是根据某些分布独立得出的。作者展示了为什么这两个属性是拍卖机制非常理想的属性,并建立第一个可证明拥有此类正式担保的NFT拍卖机制。
韩国安全计算机化公司Koscom计划进军以区块链为基础的股票贷款产业:据金融当局和有关机关透露,韩国政府最近在寻找一些利用区块链技术的方案用于泛金融圈,并计划进军以区块链为基础的股票贷款产业.。韩国安全计算机化公司(Koscom)与HTS连接交易平台合作,并以HTS为资金媒介,将区块链技术应用于改善利差与手续费的非合理性问题,并拟出更有效的方案。[2018/4/2]
3.FairTraDEX:防止价值提取的去中心化交易所
作者:
ConorMcMenamin(PhDUniversitatPompeuFabra-Barcelona,ResearcherBellLabs)
VanesaDaza(AssociateProfessorUniversitatPompeuFabra-Barcelona)
MatthiasFitzi(ResearcherIOHK)
PadraicO』Donoghue(SoftwareEngineer,SusquehannaInternationalGroup)
摘要:
作者提出了FairTraDEX,这是一种基于频繁批量拍卖(FrequentBatchAuctions,FBA)的去中心化交易(DEX)协议,它提供了针对可提取价值的正式博弈论担保。由受信任的第三方运营的FBA提供独特的博弈论最优策略,确保向玩家展示的价格等于流动性提供者的公平价格,不包括明确的、预先确定的费用。
FairTraDEX复制了FBA的关键功能,使用零知识协议中的集合成员身份和escrow-enforcedcommit-reveal协议的组合来提供这些博弈论保证。将FBA的结果扩展到处理垄断and/or恶意流动性提供者。
作者提供了真实世界的例子,证明在现有的学术和行业标准协议中执行订单的成本随着订单规模的增加而变得令人望而却步,这是由于基本的价值提取技术而普及的最大可提取价值。
作者进一步证明FairTraDEX可以防止这些执行成本,保证一个独立于订单大小的固定费用模型,这是DEX协议的第一个保证。还提供了FairTraDEX的详细Solidity和伪代码实现,使FairTraDEX成为一种新颖实用的贡献。
三、主题:AMM
1.在危难时期探索UniswapV3的价格准确性
作者:
LiobaHeimbach(PhDETHZrich)
EricSchertenleib(fromETHZrich)
RogerWattenhofer(ProfessorETHZrich)
摘要:
金融市场已经发展了几个世纪,交易所已经趋于依赖订单簿机制进行做市。然而,区块链上的延迟阻止了去中心化交易所利用订单簿机制,进而出现了更适合区块链的市场设计。尽管第一个广泛普及的DEXUniswapV2以其惊人的简单性脱颖而出,但最近UniswapV3引入的设计改革增加了复杂性,以此在提高资本效率。
在这篇论文中,作者实证研究了UnsiwapV3处理意外价格冲击的能力。研究分析发现,在最近两种稳定币UST和USDT的价格突然下跌期间,UniswapV3的价格并不准确。作者认为UnsiwapV3流动性提供者缺乏敏捷性是这些令人担忧的价格不准确的根本原因。此外,作者还概述了考虑到这种市场条件下的高波动性,流动性提供者进入流动性池的激励措施太少。
2.关于借款恒定函数做市商股票的说明
作者:
TarunChitra(Founder&CEOGauntlet)
GuillermoAngeris(LiferStanfordUniversity,HeadofResearchBainCapitalCrypto)
AlexEvans(PartnerBainCapitalCrypto)
摘要:
Uniswap、Balancer和Curve等恒定函数做市商(ConstantFunctionMarketMakers,CFMM)构成了以太坊等智能合约平台上一些最大的去中心化交易所。
随着这些协议中存入的资本数量的增长,提高流动性提供者(LP)的资本效率已成为一项越来越重要的挑战。提高效率的一种方法是允许LP以CFMM协议中的股票借用以太币或美元。
在这篇论文中,作者研究了允许此类贷款的安全性和资本效率。作者为LP借款提供了充分的条件,使其与Aave/Compound中的直接借款至少具有同样安全和资本效率。此外,作者表明CFMM贷方所承担的风险可以通过障碍期权进行复制,从而可以对冲风险。最后,作者展示了借入的CFMMLP股票的收益复制了boundedconvexpayoffs。
综合起来,这些结果表明,CFMM贷款是提高资本效率的安全机制。
3.UniswapV3中的集中流动性分析
作者:
SalehHashemseresht(from)
MohsenPourpouneh(fromKbenhavnsUni)
未找到论文链接,但是二作MohsenPourpouneh有很多Crypto方面的研究可以参考。
4.自动做市、损失vs再平衡
作者:
JasonMilionis(PhDColumbiaUniversity)
CiamacC.Moallemi(ProfessorColumbiaUniversity)
TimRoughgarden(HeadofResearcha16z,ProfessorColumbiaUniversity)
AnthonyLeeZhang(AssistantProfessorChicagoBooth)
摘要:
作者从被动流动性提供者(LP)的经济角度考虑自动做市商的市场微观结构,特别是恒定功能做市商(CFMM)。在无摩擦、连续时间的Black-Scholes设置中,在没有交易费用的情况下,作者将LP的回报分解为瞬时市场风险成分和非负、非减少且可预测的成分,作者称之为「损失vs再平衡」。
市场风险可以完全对冲,但一旦消除,LVR仍然是一种运行成本,必须通过交易费用收入来抵消,才能使流动性提供有利可图。
作者展示了如何以多种方式解释LVR:
1.作为预先承诺的成本;
2.作为放弃未来可选性的时间价值;
3.作为Doob-Meyer分解中的补偿器;
4.作为利润形式的逆向选择成本套利者对池进行交易,并且作为信息成本,因为流动性池无法获得准确的市场价格。
LVR与更常见的「无常损失」或「发散损失」度量不同;后者指标更基本地描述为「损失vs持有」(Loss-Versus-Holding),并不是真正的运行成本。
作者以封闭形式简单地表示LVR:瞬时的,它是价格方差和流动性池中可用边际流动性的缩放乘积,即LVR是广义方差互换的floatingleg。
因此,LVR很容易根据市场数据和特定的CFMM结构进行校准。LVR为CFMMLP投资决策的事前和事后评估提供了可交易的决策关键点,还可以为CFMM协议的设计提供信息。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。