前言:隐私计算赛道作为当下的风口赛道,无数企业纷纷涌入,抢跑占道。作为一家专注于区块链隐私计算赛道科普入门的垂直媒体,同时也是针对隐私计算兴趣者开放的“纯天然”、低门槛入口,我们汇总并分类了隐私计算行业内晦涩难懂的名词,编写了「隐私计算词典」板块,帮助大家理解、学习。?
此篇,我们来了解隐私计算技术架构的第三部分——联邦学习。
近年来,从无人驾驶汽车,到AlphaGo击败顶尖的真人围棋手等等,AI人工智能在科技领域的发展着实吸引了足够多人的眼球。
然而,发展至今的AI人工智能仍面临两大现实问题:
行业数据分散且收集困难,数据以孤岛的形式存在;隐私得不到保障,安全共享数据成为了一道壁垒。针对此,人们提出了一种名为「联邦学习」的隐私计算技术。
隐私计算网络Oasis公布路线图:首个EVM兼容隐私ParaTime Sapphire即将上线:8月22日消息,隐私计算网络Oasis公布2022年Q3、Q4季度发展路线图,推动行业首个EVM兼容隐私ParaTime Sapphire主网上线将是下一阶段发展重点。此外,Oasis 网络还将进行主网升级以加强现有的隐私ParaTime Cipher,以实现基于WebAssembly的隐私智能合约功能,并将发布对SGXv2和基于DCAP的证明的支持,以实现TEE的性能改进和对最新一代CPU的支持。未来两个季度的其他工作重点包括ParaTime之间的通信和稳定Oasis SDK。[2022/8/22 12:41:09]
联邦学习,又名联邦机器学习、联合学习。它是AI人工智能的一门分支技术,旨在保障大数据交换时的信息安全、数据保护,在合法合规的前提下,有效帮助多行业的数据进行机器学习建模。
蚂蚁链数据隐私协作平台发布 融合区块链与隐私计算等技术:金色财经现场报道,10月22日,2021云栖大会-蚂蚁链“区块链+”可信链接技术发展与实践分论坛在杭州举行。在论坛现场,蚂蚁链数据隐私协作平台重磅发布。蚂蚁链技术总监闫莺介绍,该平台由蚂蚁链自主研发,集成了区块链+隐私计算等技术,数据治理规则坚持分类分级管理以确保数据的安全,数据可接入可审计,全链路隐私协作一体化,主要服务于政务、金融、企业等。[2021/10/22 20:49:14]
PlatON2.0白皮书披露隐私计算网络Metis,创造安全的隐私计算范式:9月18日消息,近日,隐私AI计算网络PlatON在其社交平台发布了PlatON 2.0 白皮书第三部分的详细内容,进一步披露PlatON2.0的整体技术架构.
据了解,PlatON 2.0的隐私AI计算网络是以人工智能与隐私计算技术为核心的隐私保护解决方案,本次披露了其分三层的技术架构方案,分别是Layer1共识层、Layer2隐私计算网络Metis、Layer3 AI代理自治网络Horae 。三层架构的设计,旨在以去中心化方式聚集隐私AI计算所需的数据、算法和算力,创造安全的隐私AI计算范式。[2021/9/18 23:35:08]
隐私保护是联邦学习最主要的关注点,在实际的应用中,联邦学习通过将数据的不同特征在加密的状态下加以聚合,以增强机器学习模型能力,再通过共享数据模型,避开原始数据共享,进而保证了数据的安全性。?
隐私计算AI网络PlatON宣布正式启动安全多方计算仪式Lumino:6月7号消息,隐私计算AI网络PlatON宣布正式启动安全多方计算仪式Lumino,参与者们能以分布式的方式参与PlatON生态网络。Lumino仪式分为两个计算组,针对底层不同的密码学配置,参与者可以选择加入其中一个,或者两个计算组都参加。计算过程将依次执行。一旦仪式启动,参与者运行开源的客户端软件,并在几个小时内完成计算,参与者可以在仪式开启后的任意时间加入。根据参与者设备和带宽的具体情况,此次计算通常需要1到10小时左右来运行客户端软件。另外,系统为每个参与者运行过程配置15小时的窗口,以鼓励参与者及时完成工作量。组织方将为每一位运行客户端软件的参与者采用一个可验证计算范式。[2021/6/7 23:18:18]
利用联邦学习的特点,即使是不导出企业数据的情况下,也能为三方或多方建立机器学习模型,既充分保护了数据隐私和数据安全,又为客户提供个性化、有针对性的服务,实现了互惠互利。?
波卡生态身份协议Litentry与隐私计算协议ARPA合作提高去中心化数据安全性:波卡生态身份协议Litentry宣布与隐私计算协议ARPA达成合作,双方团队将密切合作,探索在不暴露用户数据的情况下匹配目标用户,并利用ARPA的MPC(安全多方计算)技术以保护隐私的方式分析用户链上和链下数据。此外,双方还将在更高层面上合作,以为去中心化身份和MPC标准做出贡献。[2021/4/13 20:14:18]
同时,我们可以利用不同类别的联邦学习技术来解决数据异质性问题,突破传统AI技术的局限性。依照参与建模的数据源分布,联邦学习可分为横向联邦学习、纵向联邦学习和联邦迁移学习三类。?
横向联邦学习假设收集两个数据集,这两个数据集用户特征重叠多,而用户重叠少。我们把数据集按照用户维度切分,取出双方用户特征相同,而用户不完全相同的部分数据作为机器的训练数据,这种模型称为横向联邦学习。?
例如,两个不同行政区的银行,用户群体分别来自所在行政区,重叠部分少。但是同作为银行,业务类似,因此数据集收集的用户特征则大体相同。因此,横向联邦学习模型收集的是两个数据集不完全相同的用户部分。?
如下图所示:?
纵向联邦学习与横向联邦学习相反,在两个数据集用户重叠多、用户特征重叠少的情况下,纵向联邦学习把数据集按照数据特征维度切分,取出双方用户相同,而用户特征不完全相同的部分作为机器训练数据。?
例如,同一个行政区的银行和商超,其收集的数据用户群体大致类似,但银行和商超收集到的用户特征基本不同。因此,纵向联邦学习模型收集的是两个数据集不完全相同的用户特征部分。?
如下图所示:
联邦迁移学习在用于机器学习的数据集样本用户与用户特征重叠都较少的情况下,通常不对数据进行切分,而是引入联邦迁移学习,来解决数据不足的问题,从而提升模型的效果。
具体地,可以扩展已有的机器学习方法,使之具有横向联邦学习或者纵向联邦学习的能力。?例如,收集一家位于北京的银行和一家位于上海的商超的数据,由于受到地域限制,用户群体交集很小;同时,由于银行和商超类型的不同,二者收集的数据特征也基本无重合。?
引入联邦迁移学习,首先可以先让两个数据集训练各自的模型,之后通过加密模型数据,避免在传输中泄露隐私。之后,对这些模型进行联合训练,最后得出最优的模型,再返回给各个企业。?
如下图所示:?
多种类别的联邦学习方式使得机器学习模型更加具有通用性,可以在不同数据结构、不同行业间发挥作用,没有领域和算法限制,同时具有模型质量无损、保护隐私、确保数据安全的优势。?
在实际的应用中,类似销售、金融等行业,由于知识产权、隐私保护和数据安全等因素限制,数据壁垒很难打通。
联邦学习成为了解决这些问题的关键,在不影响数据隐私和安全的情况下,对来自多方的数据进行统一的建模,进行机器学习模型的训练,这些企业之间就能更好地进行数据协作。?
可以说,联邦学习为构建跨行业、跨地域的大数据和人工智能生态圈提供了良好的技术支持。?考虑到在整个训练过程中,进行模型更新的通信仍然可以向第三方或中央服务器显示敏感信息,因此联邦学习技术广泛地与安全多方计算、TEE或者区块链等技术结合应用,来增强联邦学习的隐私性和去信任。
但目前已有的方法通常以降低模型性能或系统效率为代价提供隐私,因此,如何在理论和经验上理解和平衡这些权衡,将是实现联邦学习技术广泛应用落地的一个相当大的挑战。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。