作者|MarcHoward
编译|Guoxi
出品|区块链大本营
玩过股票的人都知道,股票市场的波动受各种因素的共同影响,有着很强的随机性,很难预测。而新兴的加密货币市场与股票市场有着很大的差别,更加难以预测。
由于传统方法行不通,国外网友MarcHoward另辟蹊径,通过分析大众对加密货币的情感来预测加密货币市场的波动。在90天的实验周期里这种方法获得了29%的投资回报率,他是怎么做到的?
让我们一起来看看。
我刚开始接触加密货币时,有一些问题困扰着我:
我们真的可以预测比特币的价格么?
谷歌趋势服务所公开的数据是否能从某种程度上反映比特币大致的涨跌趋势?
我们能否建立一个预测市场动向的可靠交易模型?
当时,我给自己定下了一个看起来遥不可及的目标,就是试图理解加密货币这个变化无常且看似无法预测的市场。
21e6 Capital:加密基金回报率上升,但融资额却下降:金色财经报道,瑞士 21e6 Capital 在一份专注于 2023 年上半年加密货币对冲基金的研究报告中发现,加密对冲基金公司的运营商发现自己陷入了一个难题:回报率上升,但融资额却下降。据 21e6 Capital 称,大多数基金回报率都为正值,但在很多情况下,这并不足以吸引资本。
报告表示:“在我们与加密货币基金的定期对话中,我们感觉到,在今年的良好开局之后,其有限合伙人/投资者的市场情绪仍然低于预期。许多基金确实落后于市场,现在更难向潜在投资者展示价值主张”。据业内人士称,许多华尔街资方都停止了他们原本计划开出的支票,一些人继续保持观望,部分是由于美国监管不确定性给加密行业的前景蒙上了阴影。[2023/8/12 16:21:52]
当然了,我这并不是不自量力。加密货币市场充满了魅力,让许多交易员都沉醉其中。有许多交易员通过技术分析的手段试图揭开加密货币市场神秘的面纱,而有一些交易员则是耍小聪明,照搬股票市场上的基本分析理论。
21e6 Capital:上半年投资BTC的平均回报率为83%:金色财经报道,根据瑞士加密货币投资顾问21e6 Capital研究报告,在2023年上半年,投资者从购买和持有BTC中获得的收益将比投资加密货币对冲基金更多。加密货币基金在此期间的平均回报率为15%,而比特币的平均回报率为83%。采用定向策略的基金平均回报率为22%,远低于比特币,但高于市场中性策略的6.8%回报率。
21e6 Capital追踪全球700多个加密货币基金,并追踪70家公司123只基金的监管业绩报告。根据彭博社的数据,表现不佳导致约97家(即13%)的加密货币对冲基金被关闭。[2023/8/7 21:30:15]
然而结果并不乐观,没有哪种神奇的交易模型总能战胜市场这只“看不见的手”。从原理上来说,有太多的因素可能会造成加密货币市场的波动,这个市场有着很强的随机性,即使那些最好的基于人工智能的交易模型也不能保证连续获利。
而我另辟蹊径,从另一个角度入手建立交易模型。这个交易模型非常简单,在这篇文章中我会以最明晰的方式展现我的思路。
加密分析师:比特币的风险调整回报率高于其他资产:2月28日消息,根据加密货币分析师Willy Woo的比特币风险调整回报率图表,比特币的风险调整回报率高于其他资产,包括黄金、美国股票、美国房地产、债券和新兴货币。当美国央行采取控制借贷成本的政策时,公开市场参与者可以自由对冲他们对经风险调整的借贷成本的看法。在当前的宏观经济环境下,比特币是散户对冲风险的一个有利可图的选择。(AMBcrypto )[2021/2/28 17:59:38]
需要说明的是,我的交易模型还是一个正在开发中的半成品,虽然在模拟实验中它展现出了强大的预测能力,但它绝不是万无一失的,如果使用我的交易模型请自行承担风险。
战胜”看不见的手“的交易模型
根据我的设想,这个交易模型应该是比特币价格的相对一致性指标,我也在不断测试并修正这个交易模型。
在这次长达90天的模拟实验中,我“买入”了价值10万美元的比特币,通过交易模型做出的买入/卖出决策,最终的投资回报率高达29%。
分析师:LINK年度回报率或类似比特币早期:Cane Island Alternative Advisors的加密货币分析师Timothy Peterson预测,ChainLink(LINK)将会获得类似比特币早期300 - 400%的年度回报率。Peterson认为,LINK的价格在很大程度上与ChainLink的采用相关。就ChainLink在加密市场的短期价值而言,Peterson预测LINK可能会在9月底触底。(EWN)[2020/9/20]
不过,作为一次模拟实验,这里的利润中并没有扣除实际交易时需要付给加密货币交易所的手续费,这巨额的手续费让我急切地盼望去中心化加密货币交易所的普及。
交易模型的灵感来自于WillyWoo的工作,Willy第一个提出使用谷歌趋势服务的数据来预测比特币价格的走向。我在他工作的基础上做出了一些改进,具体的方法如下。
首先,通过谷歌趋势服务查询最近90天里“比特币兑换美元价格”和“购买比特币”的搜索趋势:
动态 | 加密货币投资公司Pantera Capital报告其基金终身回报率超过10000%:据Bitcoin.com消息,主要的加密货币投资公司Pantera Capital报告其基金的终身回报率超过10,000%,该公司宣布了庆祝其五周年纪念日的惊人回报。自2013年推出以来,Pantera Capital已经创造了超过10,000%的终身回报。Pantera 投资了许多领先的加密货币和分布式分类账技术公司,其产品组合包括Bitstamp,Polychain Capital,Korbit,0x和Zcash。
在发送给媒体的电子邮件中,联合首席投资官兼首席执行官Dan Morehead和联席首席投资官Joey Krug声称“该基金的终身回报率为10,136.15%,扣除了费用和开支。”[2018/7/29]
7月7日到10月4日这90天时间里,“比特币兑换美元价格”和“购买比特币”的搜索趋势
其次,我注意到,当“比特币兑换美元价格”与“购买比特币”的搜索量比率低于3:1时,第二天的比特币收盘价格就会上涨。
如果这个比率大于3:1时,比如说达到了4:1或5:1,那么这就是一个要卖出的信号,因为第二天比特币收盘价格会下降。
接下来,我对比特币前后两天收盘价价格差超过80美元的情况进行了进一步的测试,在这些测试中,搜索量的比率与价格波动表现出了极大的相关性。
这里的80美元是我人为给定的一个值,这个值在实验中取得了很不错的效果。实验期间的比特币价格以及交易模型给出的买入/卖出策略如下所示:
实验期间的比特币价格以及交易模型给出的买入/卖出策略截图
根据上图,可以看出:
BTCUSD:谷歌趋势服务给出的当日搜索量数据。
BuyBitcoin:谷歌趋势服务给出的当日搜索量数据。
Price:加密货币排名网站CoinMarketCap给出的比特币当日收盘价。
Excel表格中的E列:“购买比特币”与“比特币兑换美元价格”的搜索量比率。
Excel表格中的F列:交易模型给出的买入/卖出决策。例如,针对单元格F19,决策的公式是:F19=if,“买入”,“卖出”),即当同时满足当日“购买比特币”与“比特币兑换美元价格”的搜索量比率大于35%,当天比特币收盘价与前一天差值大于80美元时买入,否则就卖出。也就是说,Excel表格中E这一列数据大于35%且G这一列数据大于80就是买入的信号。
Excel表格中的G列:比特币收盘价与前一天的差值。
Excel表格中的H列:假定在2018年7月7日价值10万美元的比特币,期间按照该交易模型给出的买入/卖出策略进行交易,当日持有的比特币总价值。
交易模型结果的优化
按照上述的交易策略,在90天的实验周期内,理论上我的资产从10万美元增长到了128,839美元,几乎实现了29%的投资回报率。不过上面我也提到了,这并不是一个最优的模型,我还可以从几个方面做出优化。
“比率大于35%”和“差额大于80美元”这样的判别准则看起来十分随意,因为这只是我在有限的90天数据集中找出的规律。是否有其他的决策标准可以产生更好的买入/卖出决策?
当比特币价格水平维持在6000到8000美元时,这个交易模型可以给出很好的决策。
在分析了过去一两年的交易信息后,我对交易模型做出了一些改进,我将决策规则细化并做成了表格,表格的纵轴为“购买比特币”与“比特币兑换美元价格”的搜索量比率,数值从1:3到1:5不等。
考虑到比特币价格波动较大,“80美元”这个指标并不总能奏效,因此我将这个指标转换为差价与当日比特币价格的比值,并将其列在表格的横轴,在这种情况下,一个可能最优的交易模型就是,在同时满足“购买比特币”与“比特币兑换美元价格”的搜索量比率为1:2.86且价格波动的比率为0.014543229时买入。
改进后的表格看起来这个样:
改进后交易模型的决策规则
后续规划
除此之外,这个交易模型还有很大的优化空间。
首先我想进行一些测试,通过研究过去的交易数据找到能够最大化利润的最佳指标,这需要对过去的价格和搜索量比率进行回归测试。
我的设想是不同的价格水平上存在着相同的最佳指标,GoodLuck!
报名|EOS智能合约与数据库开发
16岁保送北大、麻省理工博士、
EOS黑客松全球总决赛前三名
5月8日晚,精彩技术公开课与您不见不散!
推荐阅读:
小哥怒了!"区块链根本不需要监管,加密货币之魂被你们玩丢了!"
澳洲生活7年,前阿里程序员谈我们的区块链差距究竟在哪?
19岁当老板,20岁ICO失败,21岁将项目挂到了eBay,为何初创公司如此艰难?
养生996的崛起:马云竟给他最痛恨的「兔子」站台?
关于谷歌云,你应该知道的一切!|技术头条
打开阿兹海默之门:华裔张复伦利用RNN成功解码脑电波,合成语音|Nature
人工智能先驱NilsNilsson去世,吴恩达、YannLeCun悼念!
他说:当一个程序员决定告别996,什么都有可能发生!
猛戳"阅读原文"有惊喜哟
老铁在看了吗??
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。