HARE:深度解析Data Availability与Celestia的解决方案

作者:Bec

修订:Evelyn

什么是DataAvailability

大家都知道,区块链技术的一个特点就是:存放在链上的数据是安全可靠的,不可篡改的。那数据可用性是指的什么呢?难道区块链的共识不能保证数据的安全了吗?显然不是,区块链数据的安全性,是大家都认可的,也是区块链一直持续发展的一个动力之一。那么DA层是什么,我们先来看看下面几种情况。

一个节点如果想验证某一笔交易或者某一个区块,这个节点需要下载所有的区块和交易数据。由于区块链的持续运行,区块和交易数据会持续增长,这个节点的成本也会越来越高。以至于越来越多的节点只能选择运行轻节点。这些轻节点,没有下载所有的交易数据,它们不能对交易和区块进行验证,只能相信它们选择的共识节点。因此,实际上这些轻节点是不知道获得的数据是否可用。

同时区块链网络为了提高效率,一直在尝试进行扩容。以太坊的L2就是以太坊的一种扩容方案,从而提高以太坊的吞吐量。但L1和L2在本质上还是两个网络,L1是不会参与L2的共识,也不会验证和执行L2的交易,同理L2也不会参与L1的共识,亦不会验证和执行L1的交易。但是在此时,L1与L2之间其实是有信任问题的,例如:Rollup要求将所有交易数据都记录到以太坊的交易中,那么Rollup的用户为了验证自己的交易是否存入以太坊,他还需要运行一个以太坊的全节点吗?

VC巨头Lightspeed宣布将重点投资印度Web3、区块链和深度科技等新兴领域:金色财经报道,VC巨头Lightspeed宣布将重点投资印度Web3和深度科技等新兴领域,该风投还将继续投资于消费者、金融科技和软件即服务 (SaaS) 等核心主题。Lightspeed合伙人Rahul Taneja表示:“我们相信通过周期和为未来建设的公司进行投资,目前已经在 SaaS、金融科技、商业和消费者领域拥有核心投资领域,此外还将对区块链、基础设施、深度季度等新兴领域进行了初步投资。”[2023/2/22 12:22:00]

从目前区块链的工作机制当中我们可以知道,当一个节点不参与共识的时候,特别是没有存储所有交易数据的时候,对于它自己获得的数据是否有效它是无法验证的,这些节点目前都只能相信自己连接的共识节点不会自己,或者多连接几个共识节点,做一个小小的容错。

因此DA层解决的问题是,在不参与共识、以及不用存储所有交易数据的情况下,依然能够对交易进行验证,从而证明这个交易是否可用。

Celestia

在上面先介绍了什么是DA,接下来,我们再来看看Celestia项目是打算如何来解决这个问题的。

Celestia项目围绕二维Reed-Solomon纠删码,设计了一套随机抽样来验证数据、以及恢复数据的方案从而确保数据可用。

国务院:推动区块链等新技术与交通行业深度融合:金色财经报道,1月18日国务院印发《“十四五”现代综合交通运输体系发展规划》。规划显示,坚持创新驱动发展,推动互联网、大数据、人工智能、区块链等新技术与交通行业深度融合,推进先进技术装备应用,构建泛在互联、柔性协同、具有全球竞争力的智能交通系统,加强科技自立自强,夯实创新发展基础,增强综合交通运输发展新动能。[2022/1/18 8:57:07]

当一个全节点发现轻节点收到有问题的数据时,会构建一个欺诈证明并发送给这个轻节点,轻节点收到欺诈证明之后,从网络中通过随机抽样的方式,获得需要的数据,来验证这个欺诈证明是否有效,从而能够明确的知道自己之前获得的数据是否可用。轻节点不需要信任给自己发送数据的节点,也不需要信任给自己发送欺诈证明的节点,这是因为轻节点是通过随机抽样的方式,来获取进行此次验证所需要的数据,因此安全性能是由整个网络来提供的。这样也使得DA层的安全等级,能够接近共识层的安全等级。

接下来,我们来了解一下Celestia具体是如何工作的。由于Celestia项目还处于开发测试阶段,因此这里采用的都是现阶段的白皮书的介绍方案,可能会与实际的解决方案有出入。

准备

欺诈证明的验证,必须是高效的,并且不需要全部的交易数据,也不需要执行具体的交易,因此Celestia对于自己区块的数据,进行了一些扩展。

于佳宁:元宇宙的普及将推动实体经济与数字经济加速深度融合:火大教育校长于佳宁指出,元宇宙成为新一轮全球数字创新竞争高地。2021年是元宇宙元年,互联网迭代升级的大幕就此拉开。于佳宁认为,未来,元宇宙的普及将推动实体经济与数字经济加速深度融合,区块链等各类技术价值也将在赋能实体产业中逐步显现,实现新商业模式,重构分配模式,再造组织形态,重塑产业关系。(上海证券报)[2021/12/4 12:50:23]

1.stateRoot

状态的稀疏默克尔树的根,这种默克尔树的叶节点,是一个key-value对。

定义了一种变量,状态见证(w):是一些key-value对,以及他们在默克尔树中的证明,组成的集合:

定义了一个函数,rootTransition:可以通过状态根、交易、以及这些交易的状态见证,转换得到交易执行后的状态的根。也就是每个交易执行后的状态的默克尔根stateRoot`可以通过rootTransition(stateRoot,t,w)得到

2.dataRoot

将交易,以及这些交易执行的中间状态根,组合成一个固定大小与固定格式的shares?。这些所有的交易的shares?,按照二维RS纠删码,进行扩展,最后得到一个默克尔树的根,即dataRoot。

浙江省委常委周江勇:推动区块链等数字技术在政务服务、民生领域的深度应用:浙江省委常委、杭州市委书记周江勇在全市深入推进党史学习教育“民呼我为”主题活动部署会上表示,要让数字化改革成果真正造福于民,努力打造场景惠民、成果智享的城市。万物智联时代催生了更多个性化民生需求,也为创造美好生活提供了无限可能。要坚持以数字化改革为牵引,聚焦百姓、企业、基层的高频事项,推动大数据、人工智能、物联网、区块链等数字技术在政务服务、民生领域的深度应用。此次上线的“民呼我为”数字平台,就是要形成社情民意点点通、急事难事件件办、办理结果事事回、满意与否人人评的工作闭环,真正让群众呼声有着落、有回应。(人民日报)[2021/7/30 1:24:28]

具体步骤

将初始的交易数据,按照?shares?的大小与格式进行封装。

将?shares?放入一个k×k的矩阵,如果数量不够,则填充补齐。

然后应用RS纠删码,按照行和列进行3次补齐,最终得到一个2k?2k的矩阵。

对这个矩阵的每一行和每一列,都构建一个默克尔树,得到2?k个行根和2?k个列根。

最后将这4?k个根,组成一个默克尔树,得到根dataRoot。

声音 | 王小云:密码技术将深度融合5G、区块链等技术,为物联网安全保驾护航:2019物联网密码应用专题峰会在无锡召开。密码学家、中国科学院院士王小云在会上表示,物联网络设施,是经济社会运行的神经中枢,也是可能遭到重点攻击的目标,而密码是保障物联网网络安全的核心技术和基础支撑。密码学是集数学、信息科学、计算机科学和物理学等于一体的深度交叉与融合的学科。密码技术将深度融合5G、区块链、人工智能、卫星通信等技术,为物联网安全保驾护航。(经济参考报)[2019/9/12]

shares

shares?是Celestia项目定义的一个固定大小和格式的数据结构。主要内容是交易,以及执行这些交易的中间状态根。

由于没有具体规定多少交易,需要生成对应的中间状态根,项目方设定了一个?Period变量,作为最大限制周期,这个限制可以是最大多少交易之内必须生成中间状态根,也可以是多少字节,或者多少GAS。

还定义了两个函数来帮助验证:

parseShares?函数:输入shares,得到消息m,可以是中间状态根,也可能是交易。

parsePeriod?函数:输入消息,得到前状态根,执行后状态根,以及交易列表。

设定的格式举例

固定256字节

0-80:开始的交易

81-170:包含的交易

171-190:中间状态根

191-256:下一批开始的交易

白皮书中,介绍了两种欺诈证明,下面将分别对此进行介绍:

3.状态转换无效的欺诈证明

这是一个针对?stateRoot?的一个欺诈证明。全节点利用?dataRoot?中的?shares,来帮助轻节点验证收到的区块头中的?stateRoot?是否有效。

状态转换无效的欺诈证明的组成:

对应块的blockhash

相关的?shares

这些?shares?在?dataRoot?对应的默克尔树中的默克尔证明

这些?shares?包含的交易的?状态见证。

证明的验证:

验证blockhash,确定是对于哪个区块的欺诈证明。

验证证明中的每个?shares?的默克尔证明是否有效。

通过?shares?的两个解析函数,可以正确得到对应的交易列表,以及这批交易的执行前状态根和执行后状态根。并且如果执行前状态根为空,则第一个交易一定是块的第一笔交易;同时如果执行后状态根为空,则最后一笔交易一定也是块的最后一笔交易。

根据rootTransition函数,来验证得到的两个状态根。

4.错误生成扩展数据的欺诈证明

这是一个针对?shares?在网络传播时,当一个全节点从网络中收到?shares?恢复的数据,与自己的数据不匹配时,会向网络回应欺诈证明。

错误生成扩展数据的欺诈证明的组成:

错误的?shares?所在行或列的默克尔根。

这个行或列的默克尔根,在?dataRoot?对应的默克尔树中的默克尔证明。

这足够恢复这一行或列的?shares。

每个shares?在?dataRoot对应的默克尔树中的默克尔证明。

证明的验证:

验证blockhash,确定是对于哪个区块的欺诈证明。

验证证明中行或列的默克尔根的默克尔证明是否有效。注:VerifyMerkleProof(行或列的默克尔根,行或列的默克尔根的默克尔证明,dataRoot,长度,位置索引)其中前面2个数据是证明携带的数据,后面3个是本地数据。

验证证明中每个?shares?的默克尔证明是否有效。注:VerifyShareMerkleProof(shares,shares?的默克尔证明,dataRoot,长度,位置索引)其中?dataRoot是本地数据,另外数据都是从证明中获得。

通过收到的?shares,恢复这一行或列的所有数据,并验证其默克尔根是否等于自己之前收到的对应行或列的默克尔根。

数据可用性

通过2维RS纠删码,Celestia的轻节点通过随机抽样的方式,来获取区块数据,以及验证欺诈证明的相关数据。同时随机抽样的数据,并在网络中传播,当达到一定的数量时,也可以帮助网络恢复区块数据。下面介绍一下具体的工作流程:

轻节点从任意一个连接的全节点中获取一个新区块的块头,以及2k个行和2k个列的默克尔根。先用这些默克尔根与区块头中的?dataRoot?进行初步校验。如果错误则拒绝这个区块头。

在这个2k×2k的矩阵中,轻节点随机挑选一组不重复的坐标,将这些坐标发送给与自己相连的全节点们。

如果一个全节点拥有这些坐标所对应的所有数据,就会将这个坐标对应的?shares,以及?shares?的行或列的默克尔证明,回应给轻节点。

轻节点对于每一个收到的?shares,都会验证其默克尔证明是否有效。注:VerifyMerkleProof其中前面2个数据是证明携带的数据,后面3个是本地数据。

如果一个全节点没有回应某一个坐标的?shares,轻节点则会将自己收到的对应的shares、以及它的默克尔证明发送给这个全节点,这个全节点也会将收到的数据转发给相连的其他全节点。

如果步骤4中的验证都没有问题,并且步骤2中抽样的坐标都有收到回应,同时在一个设定的时间段内没有收到关于这个区块的欺诈证明,则轻节点认为这个区块是数据可用的。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

地球链

[0:0ms0-0:861ms