WEB:WEB3技术发展探索:隐私保护计算

数据流通行业进入密态时代,可信隐私计算将成为未来十几年互联网重点关注的领域。

7 月 4 日,蚂蚁集团宣布面向全球开发者正式开源可信隐私计算框架 “隐语”。

隐语是蚂蚁集团历时 6 年自主研发,以安全、开放为核心设计理念打造的可信隐私计算技术框架,涵盖了当前几乎所有主流隐私计算技术。

据介绍,隐语内置 MPC、TEE、同态等多种密态计算虚拟设备,提供多类联邦学习算法和差分隐私机制。通过分层设计和开箱即用的隐私保护数据分析、机器学习等功能,有效降低了开发者应用的技术门槛,能助力隐私计算应用于 AI、数据分析等领域,解决隐私保护和数据孤岛等行业痛点。

经过蚂蚁集团大规模业务以及外部金融、医疗等场景的成功应用,隐语兼顾了安全和性能。在发布会中,蚂蚁集团介绍了隐语的诸多特性.

隐私计算:数据要素安全流通的“加速器”

中央全面深化改革委员会第二十六次会议审议通过的《关于构建数据基础制度更好发挥数据要素作用的意见》,对数据确权、流通、安全、监管等作出重要战略部署,引领我国数据基础制度建设驶入快车道。与此相应,能够为数据跨行业、跨机构的高效安全流通提供有力保障的隐私计算,也迎来了发展的“黄金期”。

SAVAGE与三星达成合作,将为Web3用户提供高质量照片和视频:1月4日消息,基于Polygon区块链的流媒体应用SAVAGE宣布与三星达成合作,将在Web3中为用户提供高质量的照片和视频。SAVAGE智能电视应用可以实现IRL显示连接,并在任何市场中实现最高画质的上传(最高 8K)。[2023/1/4 9:51:25]

隐私计算技术可以在保护数据隐私安全的前提下,对数据进行分析和计算,为数据跨行业、跨机构的高效安全流通提供了有力保障。隐私计算技术涉及密码学、统计学、人工智能、计算机硬件等众多学科,其发展历史最早可追溯到20世纪40年代。但是直到最近几年,随着硬件技术的不断发展与算力技术的不断优化,隐私计算技术才迎来了大规模商用的机遇。

目前,我国已在隐私计算技术领域取得了丰硕成果:联邦学习、多方安全计算、可信执行环境等核心技术不断完善;隐私计算技术在金融、医疗、政务等诸多应用场景不断落地;FATE联邦学习开源框架与互联互通技术迅速普及……现在,《关于构建数据基础制度更好发挥数据要素作用的意见》的审议通过,则令隐私计算技术真正迎来了发展的“黄金期”。

2020年以来,我国陆续推出了《数据安全法》、《个人信息保护法》等法律法规,以期最大限度保障互联网用户的数据权益。

西甲将从2023年起将Web3技术纳入联盟:金色财经报道,西班牙足球甲级联赛宣布计划实施一个基于Web3技术的足球追踪系统,将验证这些足球的真实性以确保球迷可以通过官方市场或抽奖获得它们。

据悉,该系统计划在卡塔尔世界杯结束后开始运行,用于回收每场比赛中使用的球,并区分用于进球的特定足球。根据发布的官方新闻声明,西甲联赛解释说,这些得分球将通过“球迷参与机制”提供给所有球迷,该机制将于 1 月 8 日晚些时候公布。(innovation-village)[2022/12/6 21:25:46]

除了国家层面的监管,还需要强大的技术手段作为支撑。Web3.0所具有的技术特性与解决上述问题的契合度,一定程度上也预示了其在中国市场的发展空间。

其中,隐私计算作为解决数据隐私问题的关键技术,正在成为Web3.0的刚需存在。

在Web3.0时代,用户将倾向于用更彻底的方式保护个人数据隐私,从而引发数据所有权和价值的转移。而隐私计算通过同态加密、多方安全计算、可信执行环境等技术,可以保证数据在使用过程中可用不可见。

值得关注的是,隐私保护是多方面的。随着Web3.0中应用的去中心化、链上数据可查的情况下,用户行为、产生的数据乃至应用协议亦需得到隐私保护。

Web3数据聚合和分析工具Mystic.com完成450万美元融资:8月22日消息,Web3 数据聚合和分析工具 Mystic.com 完成 450 万美元种子轮融资,投资方未披露。Mystic.com 目前处于 Beta 测试版本,计划于今年晚些时候推出 iOS 和 Android 移动版本。[2022/8/22 12:41:29]

因此,隐私计算提供的数据保护可涉及多个层面,如:基础区块链平台隐私保护、存储数据隐私(分布式存储)、用户私钥管理、匿名协议等多方面。

在隐私计算巨大的市场潜力下,越来越多的头部风投机构和开发者入场隐私赛道。2021年下半年以来,在Web3.0的隐私赛道下,各种项目的角逐日益激烈,协议与应用层都诞生了诸多主打隐私的项目。

1. 隐私交易协议

隐私交易网络,主要针对链上交易数据进行隐私化处理,通过零知识证明等技术原生支持用户进行隐私交易,可以保证自己的隐私数据不会被外界查看,同时支持在该协议开发更多类型的隐私应用。

2021年以来,至少数十个主打隐私交易的区块链网络出现并获得a16z、红杉资本等主流投资机构的支持,是最受资本市场看好的赛道之一。

星链区块网StarLink X(SX)布局Web3.0正式上线:据官方消息,StarLink X Foundation于State of California宣布星链区块网StarLink X(SX)将于北京时间10月18日20:30上线Hotcoin平台。StarLink X历经两年发展,于2021年3月宣布正式推出区块网络StarLink X,同步于7月在State of California启动第一期先行网络的实验计划。

StarLink X主要研发与应用场景为“星链计划”互联网络Web3.0技术研发及网络设施布局,主要方向为智能进化研究及智慧信息传输。StarLink X区块网生态体系包含SX-HX-EX三大战略阶段,共计四年部署完成。[2021/10/18 20:37:27]

据不完全统计,隐私交易网络包括Layer1隐私协议与Layer2隐私协议,前者类目之下分别诞生了十多个项目,后者的类目下也诞生了3个项目。目前,隐私交易网络大多数处于测试与开发阶段,并未有广泛应用。

2. 隐私计算协议

隐私计算协议,主要从数据的产生、收集、保存、分析、利用、销毁等环节对隐私进行保护,除了常见的DeFi、NFT等场景外,还计划与大数据和AI行业进行深度结合。

TUSD运营商TrustToken收购Web3开发公司EthWorks:9月15日消息,DeFi协议TrueFi和稳定币TUSD的运营商TrustToken收购了Web3开发公司EthWorks,收购对价未披露。TrustToken表示,收购资金来源于最近一轮由a16z等投资的1250万美元融资,收购后EthWorks团队将加入TrustToken,并继续开发以太坊开发工具Waffle和useDApp。(CoinDesk)[2021/9/15 23:27:19]

与其他形式的隐私项目相比,隐私计算协议是一种更底层的基础设施,具体的交易信息(币种类型与数量等)往往可以通过区块浏览器公开查看,但更强调用户使用数据的隐私。

目前主要的隐私技术包括零知识证明、安全多方计算、基于现代密码学的联邦学习、可信执行环节(TEE)等。

值得注意的是,隐私计算不是区块链的原生产物,就像分布式存储在区块链诞生之前就已经存在了。而基于区块链的隐私计算与其他类型的隐私计算最根本的不同在于,底层技术区块链是去中心化的,排除可信第三方(TTP)。

目前比较知名的区块链隐私计算网络包括Phala Network、Oasis Network、PlatON、ARPA、Aleph Zero、Findora和Deeper Network等。

由于隐私计算目前仍然很少被产业型项目所采用,以及部分技术尚不成熟,所以隐私计算网络目前的实际应用场景亦比较有限,这也是没有广泛应用的主要原因。

3. 隐私应用

隐私应用是指建立在Layer1或Layer2协议之上,为用户或DApp提供不同应用场景隐私保护功能的应用,例如交易、支付、邮件等。

据不完全统计,隐私应用目前也有16个了。其中,Tornado Cash是目前最为常用的隐私应用,如今许多加密用户都会使用该应用对资产信息进行隐私化处理。

4. 隐私币

隐私币是指原生支持隐私性的加密货币,外界无法查看交易双方的具体交易类型、金额等信息,通常不支持智能合约及相关应用,最早在2014年就有相关项目诞生。

目前,隐私币普遍发展状况一般,用户量、交易量都大幅小于智能合约平台、DeFi等赛道项目。

2020年被认为是隐私计算元年,除了垂直的初创企业外,不少互联网企业、综合IT服务商、人工智能、大数据等相关企业纷纷试水隐私计算赛道。作为推动实现数据「可?不可?」的?类重要技术,隐私计算技术?前已成为了基于合规与产业之间的?条必经之路,并在数据安全流通、价值释放过程中,向市场展示出了技术的不可替代性。

近两年,海内外隐私计算产业扩?趋势明显,区块链创企、?融机构、数据服务商、互联?巨头等多类机构投资研发隐私计算领域。通过在区块链分布式技术领域的不断探索,隐私计算逐步从理论?向实践,从开发?向应?,隐私计算的多技术路径协同互补已成为业界共识。

隐私计算技术联盟(Privacy Computing In China,简称“ PCIC ”)由此诞生,由区块链原?隐私计算?态中的建设者们发起,是国内首个区块链隐私计算领域的自治组织。

该联盟通过「中国技术经济学会区块链分会」牵头发起,由Phala Network、Cabin VC、Candaq、Findora、Oasis Network、CertiK、Manta Network、Blocklike八家机构共同筹办。

中国技术经济学会成立于 1978 年,是全国技术经济工作者自愿组成并依法登记成立的学术性、公益性法人社会团体,是中国科协直属学会之一,累计发展会员 7000 多人。主要工作内容包括为党中央和国务院的重大决策提供参考意见,为国民经济和社会发展规划的编制,为国家重大科技、产业、区域发展规划等的制定提供咨询服务等。

投资持续走热的同时,隐私计算落地应用情况如何?根据艾瑞咨询发布的《2022年中国隐私计算行业研究报告》显示,隐私计算目前正处于落地初期阶段,金融、政务、通信运营商领域的商用实践相对领先。其中,金融行业对数据安全性、隐私性要求严格,成为隐私计算落地应用的重要领域。

以金融风控应用为例,由于金融数据的敏感性,无法在多个机构间直接共享与整合。陈凯表示,隐私计算技术能在保护用户个人隐私安全的前提下,为金融机构链接海量数据,优化迭代其风控模型,构建完整的贷前风险识别、贷中管理、贷后风险预警,为金融机构降低信贷风控成本与坏账率。未来,隐私计算或在金融领域大展拳脚。

安全与效率的平衡,是数据要素产业发展的一大难题。陈凯认为,无论是多方安全计算、联邦学习、同态加密,还是秘密共享等隐私计算技术,在实际应用场景中都对算力提出了巨大的需求与挑战。倘若算力性能无法提升,那么隐私计算将难以处理越来越多的海量数据,也就无法实现自身的规模化发展。

值得期待的是,目前算力的提升得到了社会各层面的普遍重视。在国家层面,京津冀、长三角、粤港澳大湾区、成渝、内蒙古、贵州、甘肃、宁夏等8地已启动建设国家算力枢纽节点,标志着“东数西算”工程已进入到规划建设阶段。隐私计算消除了数据壁垒,为数据要素市场化、全国数据资源流通“一盘棋”提供了有效技术支持,因而也将成为“东数西算”工程实施“软”建设的关注重点。

在企业层面,构建一个良好的发展生态,是隐私计算发展与规模化应用的关键所在。因此需促进各方互通互联,实现技术开放与迭代,充分释放算力市场的巨大发展空间。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

地球链

[0:0ms0-0:939ms