ICE:价格预言机的使用总结(二):UniswapV2篇

该系列的前一篇文章介绍了 Chainlink 价格预言机的使用,其目前也被大部分 DeFi 应用所使用,但依然存在局限性。首先是所支持的 Token 的覆盖率还不全,尤其是长尾资产,大多还未支持,比如 SHIB,目前只在 BSC 主网有 SHIB/USD 的 Price Feed,而其它网络的都还没有,连 Ethereum 的都还没支持。其次,有些资产的偏差阈值较大,价格更新也比较慢,可能长达十几二十个小时才会更新价格,比如 BNT。

这时候就需要考虑其它价格预言机了,而 UniswapV2 和 UniswapV3 都是不错的选择。

本篇先来聊聊如何使用 UniswapV2 作为价格预言机。

UniswapV2 使用的价格预言机称为 TWAP(Time-Weighted Average Price),即时间加权平均价格。不同于链下聚合的 Chainlink 取自多个不同交易所的数据作为数据源,TWAP 的数据源来自于 Uniswap 自身的交易数据,价格的计算也都是在链上执行的,因此,TWAP 属于链上预言机。

TWAP 的原理比较简单,首先,在 UniswapV2Pair 合约中,会存储两个变量 price0CumulativeLast 和 price1CumulativeLast,在 _update() 函数中会更新这两个变量,其相关代码如下:

摩根大通将比特币公平价格预估下调至38000美元:1月29日消息,摩根大通就最近加密市场面临的波动性增加,将比特币公平价格预估下调至38000美元。据悉,该机构在11月估计比特币的长期价格为14.6万美元,当时比特币价格超过6万美元。而今年晚些时候比特币与黄金的波动率将降至2倍左右,基于比特币与黄金的波动率约为 4 倍,基于此,摩根大通预测对比特币的公允价值将是150000美元的 1/4,即38000美元。(Bitcoin.com)[2022/1/29 9:21:46]

price0CumulativeLast 和 price1CumulativeLast 分别记录了 token0 和 token1 的累计价格。所谓累计价格,其代表的是整个合约历史中每一秒的 Uniswap 价格总和。且只会在每个区块第一笔交易时执行累加计算,累加的值不是当前区块的第一笔交易的价格,而是在这之前的最后一笔交易的价格,所以至少也是上个区块的价格。取自之前区块的价格,可以大大提高操控价格的成本,所以自然也提高了安全性。

如上图所示,合约的第一个区块为 Block 122,这时候,价格和时间差都为 0,所以累计价格也为 ?0。到了下一个区块 Block 123,这时候取自上个区块的最后一口价格 10.2,且经过的时间差为 7,因此就可以计算出累计价格 priceCumulative = 10.2 * 7 = 71.4。再到下个区块 Block 124,取自上一口价格 10.3,两个区块间的时间差为 8,那此时的累计价格就变成了 71.4 + (10.3 * 8) = 153.8。Block 125 的时候也同理,上口价格为 10.5,区块时间差为 5,所以最新的累计价格就变成了 153.8 + (10.5 * 5) = 206.3。

加密货币数据公司Nomics推出AI驱动的7天价格预测:加密货币数据公司Nomics正在将人工智能应用于通常混乱的加密货币交易。Nomics宣布推出可以进行7天加密货币价格预测的AI系统。该公司首席执行官克莱·柯林斯(Clay Collins)告诉Cointelegraph,这些预测仅适用于寻求预测的散户投资者,不应视为福音。(Cointelegraph)[2020/4/23]

有了这个基础之后,就可以计算 TWAP 了。

计算 TWAP 的原理也是非常简单,如上图所示,这是计算时间间隔为 1 小时的 TWAP,取自开始和结束时的累计价格和两区块当时的时间戳,两者的累计价格相减,再除以两者之间的时间差,就算出这 1 小时内的 TWAP 价格了。

这是 TWAP 最简单的计算方式,也称为固定时间窗口的 TWAP。下面来讲讲具体如何实现。

Uniswap 官方也有提供了一个示例代码来计算固定时间窗口的 TWAP,其代码放在 v2-periphery 项目中:

https://github.com/Uniswap/v2-periphery/blob/master/contracts/examples/ExampleOracleSimple.sol

动态 | Max Keiser将BTC价格预期提高至40万美元:华尔街金融分析师、比特币支持者Max Keiser近期在节目中表示,他“正式”将其对比特币的目标价格提高到40万美元:“这是八年来我第一次把它提高到40万美元。这是我的最新正式目标。”(U.Today)[2020/2/17]

该示例代码也比较简单,我们直接贴上代码看看:

PERIOD 指定为了 24 小时,说明这个示例计算 TWAP 的固定时间窗口为 24 小时,即每隔 24 小时才更新一次价格。

该示例也只保存一个交易对的价格,即 token0-token1 的价格。price0Average 和 price1Average 分别就是 token0 和 token1 的 TWAP 价格。比如,token0 为 WETH,token1 为 USDC,那 price0Average 就是 WETH 对 USDC 的价格,而 price1Average 则是 USDC 对 WETH 的价格。

update() 函数就是更新 TWAP 价格的函数,这一般需要链下程序的定时任务来触发,按照这个示例的话,就是链下的定时任务需要每隔 24 小时就定时触发调用 update() 函数。

update() 函数的实现逻辑也和上面所述的公式一致:

声音 | John McAfee:仍坚信比特币5万美元中期价格预测,也坚信2020年底将达100万美元:杀软件之父、加密货币支持者John McAfee发推称:“忽略掉比特币价格的下跌吧。我坚定地支持Peter Brandt对5万美元中期价格的预测。我对2020年底前100万美元的价格也很坚定。”[2019/9/30]

读取出当前最新的累计价格和当前的时间戳;

计算出当前时间和上一次更新价格时的时间差 timeElapsed,要求该时间差需要达 24 小时;

根据公式 TWAP = (priceCumulative - priceCumulativeLast) / timeElapsed 计算得到最新的 TWAP,即 priceAverage;

更新 priceCumulativeLast 和 blockTimestampLast 为当前最新的累计价格和时间戳。

不过,有一点需要注意,因为 priceCumulative 本身计算存储时是做了左移 112 位的操作的,所以计算所得的 priceAverage 也是左移了 112 位的。

consult() 函数则可查询出用 TWAP 价格计算可兑换的数量。比如,token0 为 WETH,token1 为 USDC,假设 WETH 的价格为 3000 USDC,查询 consult() 时,若传入的参数 token 为 token0 的地址,amountIn 为 2,那输出的 amountOut 则为 3000 * 2 = 6000,可理解为若支付 2 WETH,就可根据价格换算成 6000 USDC。

比特币2018年价格预期获上调:据了解,由于比特币价格近期涨势良好,Standpoint将比特币在2018年价格的预期进行了上调最终至14000美元。[2017/11/21]

固定时间窗口 TWAP 的原理和实现,比较简单,但其最大的不足就是价格变化不够平滑,时间窗口越长,价格变化就可能会越陡峭。因此,在实际应用中,更多其实是用滑动时间窗口的 TWAP。

所谓滑动时间窗口 TWAP,就是说,计算 TWAP 的时间窗口并非固定的,而是滑动的。这种算法的主要原理就是将时间窗口划分为多个时间片段,每过一个时间片段,时间窗口就会往右滑动一格,如下图所示:

上图所示的时间窗口为 1 小时,划分为了 6 个时间片段,每个时间片段则为 10 分钟。那每过 10 分钟,整个时间窗口就会往右滑动一格。而计算 TWAP 时的公式则没有变,依然还是取自时间窗口的起点和终点。如果时间窗口为 24 小时,按照固定时间窗口算法,每隔 24 小时 TWAP 价格才会更新,但使用滑动时间窗口算法后,假设时间片段为 1 小时,则 TWAP 价格是每隔 1 小时就会更新。

Uniswap 官方也同样提供了这种滑动时间窗口 TWAP 实现的示例代码,其 Github 地址为:

https://github.com/Uniswap/v2-periphery/blob/master/contracts/examples/ExampleSlidingWindowOracle.sol

我们也贴上代码看看:

要实现滑动时间窗口算法,就需要将时间分段,还需要保存每个时间段的 priceCumulative。在这实现的示例代码中,定义了结构体 Observation,用来保存每个时间片段的数据,包括两个 token 的 priceCumulative 和记录的时间点 timestamp。还定义了 pairObservations 用来存储每个 pair 的 Observation 数组,而数组实际的长度取决于将整个时间窗口划分为多少个时间片段。

windowSize 表示时间窗口大小,比如 24 小时,granularity 是划分的时间片段数量,比如 24 段,periodSize 则是每时间片段的大小,比如 1 小时,是由 windowSize / granularity 计算所得。这几个值都在构造函数中进行了初始化。

触发 update() 函数则更新存储最新时间片段的 observation,如时间片段大小为 1 小时,即每隔 1 小时就要触发 update() 函数一次。因为这个示例中是支持多个 pair 的,所以 update() 时需要指定所要更新的两个 token。

而查询当前 TWAP 价格的计算就在 consult() 函数里实现了。首先,先获取到当前时间窗口里的第一个时间片段的 observation,也算出当前时间与第一个 observation 时间的时间差,且读取出当前最新的 priceCumulative,之后就在 computeAmountOut() 函数里计算得到最新的 TWAP 价格 priceAverage,且根据 amountIn 算出了 amountOut 并返回。

本文我们主要介绍了被广泛使用的一种链上预言机 TWAP(时间加权平均价格),且介绍了固定时间窗口和滑点时间窗口两种算法的 TWAP。虽然,TWAP 是由 Uniswap 推出的,但因为很多其他 DEX 也采用了和 Uniswap 一样的底层实现,如 SushiSwap、PancakeSwap 等,所以这些 DEX 也可以用同样的算法计算出对应的 TWAP。

但使用 UniswapV2 的 TWAP,其主要缺陷就是需要链下程序定时触发 update() 函数,存在维护成本。UniswapV3 的 TWAP 则解决了这个问题,下一篇会来聊聊其具体是如何实现的。

文章首发于「Keegan小钢」公众号:

https://mp.weixin.qq.com/s?__biz=MzA5OTI1NDE0Mw==&mid=2652494441&idx=1&sn=57a97690390b93770c5a906dce4157c8&chksm=8b685079bc1fd96f9ab60cc1b41b8642abf807a13a37c12f05a280be2e03f3a9288a047b5739&token=1584634265&lang=zh_CN#rd

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

地球链

[0:15ms0-1:33ms