GEN:EigenLayer:将以太坊级别的信任引入中间件

作者:Jiawei,IOSGVentures

引子

在当前的以太坊生态中,存在着许多的中间件。

左侧是应用端的视角。一些dApp的运行依赖于中间件:例如DeFi衍生品依赖于预言机喂价;例如资产的跨链转移依赖于跨链桥作为第三方中继。

右侧是模块化的视角。例如在Rollup排序中我们需要构建Sequencer网络;在链下数据可用性中我们有DAC或者PolygonAvail和Celestia的DA-PurposeLayer1。

这些大大小小的中间件独立于以太坊本身而存在,运行着验证者网络:即投入一些代币和硬件设施,为中间件提供服务。

我们对中间件的信任源于?EconomicSecurity,如果诚实工作可以得到回报,如果作恶则将导致质押代币的Slashing。这种信任的级别来源于质押资产的价值。

如果我们把以太坊生态中所有依赖EconomicSecurity的协议/中间件比作一个蛋糕,那么看起来会像是这样:资金根据质押网络的规模被切分成大大小小的部分。

然而,当前的EconomicSecurity仍然存在一些问题:

对于中间件。中间件的验证者需要投入资金以守护网络,这需要一定的边际成本。出于代币价值捕获的考虑,验证者往往被要求质押中间件原生代币,由于价格波动导致其风险敞口存在不确定性。

其次,中间件的安全性取决于质押代币的总体价值;如果代币暴跌,攻击网络的成本也随之降低,甚至可能引发潜在的安全事件。该问题在一些代币市值较为薄弱的协议上尤为明显。

对于dApp。举例而言,一些dApp不必依赖于中间件,而只需要信任以太坊;对于一些依赖中间件的dApp,实际上其安全同时依赖于以太坊和中间件的信任假设。

中间件的信任假设本质上来源于对分布式验证者网络的信任。而我们看到由于预言机错误喂价导致的资产损失事件不在少数。

EigenLayer将增加LST上限,第三季度将上线Operator测试网:7月1日消息,以太坊再质押协议EigenLayer宣布将增加流动性质押代币(LST)的上限,不过相关协议参数更改还须获得多重签名治理系统的批准。EigenLayer操作多重签名通过时间锁执行例行升级和维护,对所有安全关键操作强制执行至少10天的延迟,这也意味着,7月10日之后Operations多签可以取消上限。EigenLayer预计将在7月10日当周提高LST上限。届时,LST上限(包括rETH、stETH和cbETH)将增加到15,000个代币(每类LST),没有个人存款限制。一旦所有LST存款的总和达到3万枚代币,将启动暂停LST再质押。

EigenLayer表示,随着LST上限的增加,将探索EigenLayer路线图的下一步。重点仍然是增强再质押体验,同时确保安全性和去中心化。具体计划是,第三季度上线Operator测试网,第四季度上线主动验证服务(AVS)测试网,预计2024年第一季度上线AVS主网。[2023/7/1 22:12:06]

这样,进一步地带来木桶效应:

假设某个可组合性极高的DeFi应用A,相关牵扯的TVL达到数十亿级别,而预言机B的信任仅仅依赖于数亿级别的质押资产。那么一旦出现问题,由于协议间关联所带来的风险传导和嵌套,可能无限放大预言机所造成的损失;

假设某模块化区块链C,采用数据可用性方案D、执行层方案F等等,如果其中的某一部分出现行为不当/遭受攻击,波及范围将是C整条链本身,尽管系统其他部分并没有问题。

可见系统安全取决于其中的短板,而看似微不足道的短板可能引发系统性风险。

EigenLayer做了什么?

EigenLayer的想法并不复杂:

类似于共享安全,尝试把中间件的EconomicSecurity提升至等同于以太坊的级别。

这是通过「Restaking」来完成的。

DeFi平台EigenLayer在以太坊主网上推出Restaking协议:金色财经报道,根据一份新闻稿,DeFi平台EigenLayer已经在以太坊主网上部署了其重新抵押协议。该协议允许那些抵押ETH的人通过存入liquid抵押代币在EigenLayer上重新抵押,包括Lido stETH(stETH)、Rocket Pool ETH(rETH)和Coinbase Wrapped Staked ETH(cbETH)。

EigenLabs是EigenLayer的开发者,在一系列的投资回合中,包括3月份的5000万美元的A轮投资,总共筹集了6450万美元,估值为5亿美元。[2023/6/15 21:37:44]

Restaking即是把以太坊验证者网络的ETH敞口进行二次质押:

原先,验证者在以太坊网络上进行质押以获得收益,一旦作恶则将导致对其质押资产的Slash。同理,在进行Restaking之后能够获得在中间件网络上的质押收益,但如果作恶则被Slash原有的ETH质押品。

具体Restake的实施方法是:质押者可以把以太坊网络中提款地址设置为EigenLayer智能合约,也即赋予其Slashing的权力。

除直接Restake$ETH之外,EigenLayer提供了其他两种选项以扩展TotalAddressableMarket,即分别支持质押WETH/USDC的LPToken和stETH/USDC的LPToken。

此外,为了延续中间件原生代币的价值捕获,中间件可以选择在引入EigenLayer的同时保持对其原生代币的质押要求,即EconomicsSecurity分别来源于其原生代币和以太坊,从而避免单代币的价格暴跌引发的「死亡螺旋」。

可行性

总体来看,对验证者来说,参与EigenLayer的Restaking有资本要求和硬件要求两点。

参与以太坊验证的资本要求是32ETH,在Restaking上保持不变,但在引入到新的中间件时会额外增加潜在的风险敞口,如Inactivity和Slashing。

以太坊再质押协议EigenLayer 发布第一阶段测试网:金色财经报道,以太坊再质押协议 EigenLayer 在以太坊 Goerli 网络上发布 EigenLayer 协议第一阶段测试网,目前仅支持流动性重质押和原生重质押。流动性质押支持在 EigenLayer 合约上重新抵押各种流动性代币。EigenLayer 的发布将分三个阶段进行,分别为质押者、节点运营商和服务。EigenLayer 表示,该测试网是早期的非激励性测试网,代码正在积极开发中。

此前报道,3 月底,EigenLayer 背后团队 EigenLabs 完成 5000 万美元 A 轮融资,Blockchain Capital 领投,Coinbase Ventures、Polychain Capital、Hack VC、Electric Capital、IOSG Ventures 等参投。[2023/4/7 13:49:17]

而硬件设施方面,为了降低验证者的参与门槛,实现足够的去中心化,合并后以太坊验证者的硬件要求很低。稍好的家用电脑其实已经可以达到推荐配置。这时一些硬件要求其实是溢出的。类比于矿工在算力资源足够的时候同时挖多个币种,仅从硬件方面来说,Restaking相当于用溢出的这部分硬件Capability去为多个中间件提供支持。

听起来很像Cosmos的InterchainSecurity,仅此而已?实际上,EigenLayer对后合并时代以太坊生态的影响可能不止于此。本文我们选取EigenDA来做进一步阐述。

EigenDA

注:此处仅十分简略地介绍数据可用性、纠删码和KZG承诺。数据可用性层是模块化视角下的拆分,用于为Rollup提供数据可用性。纠删码和KZG承诺是数据可用性采样的组成部分。采用纠删码使得随机下载一部分数据即可验证所有的数据可用性,并在必要时重建所有数据。KZG承诺用于确保纠删码被正确编码。为避免偏离本文主旨,本节将省略一些细节、名词解释和前因后果,如对本节Context有疑问,可阅读IOSG此前的文章「合并在即:详解以太坊最新技术路线」以及「拆解数据可用层:模块化未来中被忽视的乐高积木」。

以太坊再质押协议EigenLayer完成5000万美元A轮融资:金色财经报道,以太坊再质押协议EigenLayer完成5000万美元的A轮融资,Blockchain Capital领投,Coinbase Ventures、Polychain Capital、Hack VC和Electric Capital等其他投资者参投。此前,EigenLayer曾完成1450万美元种子轮融资,Polychain Capital和Ethereal Ventures领投。

EigenLayer背后的开发公司EigenLabs,由西雅图华盛顿大学助理教授Sreeram Kannan于2021年创立。该公司表示,它使用户能够重新抵押他们的ETH并在共识层进行创新,而无需启动全新的区块链。EigenLabs计划在今年余下时间分阶段推出EigenLayer的初始版本。(The Block)[2023/3/29 13:31:50]

作为简单回顾,我们把当前的DA方案划分为链上和链下两部分。

链上部分,PureRollup是指单纯把DA放到链上的方案,即需要为每个字节恒定支付16gas,这将占到Rollup成本的80%-95%之多。在引入Danksharding之后,链上DA的成本将得到大幅降低。

在链下DA中,每种方案在安全性和开销上有一定的递进关系。

PureValidium是指仅把DA放在链下,而不做任何保证,链下数据托管服务商随时有关机下线的风险。而特定于Rollup中的方案包括StarkEx、zkPorter和ArbitrumNova,即由一小部分知名第三方组成DAC来保证DA。

EigenDA属于通用化的DA解决方案,与Celestia和PolygonAvail同属一类。但EigenDA和其余两者的解决思路又有一些差异。

作为对比,我们首先忽略EigenDA,来看Celestia的DA是如何工作的。

以Celestia的QuantumGravityBridge为例:

以太坊再质押市场Eigen Layer发布V1白皮书,模块列表包括MEV、排序等:2月21日消息,以太坊再质押市场Eigen Layer发布V1白皮书,其中描述了核心开发人员在即将发布的第一版协议中实施的关键思想,包括潜在Eigen Layer模块列表(例如MEV、排序)。此外,EigenLayer还启动了Eigen Layer论坛,用于重点讨论Eigen Layer协议、EigenDA开发、中间件研发这3个主题。

据悉,Eigen Layer是一种建立在以太坊之上的协议,它引入了再质押概念,允许在共识层上重新质押ETH。质押ETH的用户可以选择加入Eigen Layer智能合约以重新抵押ETH并将加密经济安全性扩展到网络上的其他应用程序。[2023/2/21 12:19:07]

以太坊主链上的L2Contract像往常一样验证有效性证明或欺诈证明,区别在于DA由Celestia提供。Celestia链上没有智能合约、不对数据进行计算,只确保数据可用。

L2Operator把交易数据发布到Celestia主链,由Celestia的验证人对DAAttestation的MerkleRoot进行签名,并发送给以太坊主链上的DABridgeContract进行验证并存储。

这样实际上用DAAttestation的MerkleRoot代替证明了所有的DA,以太坊主链上的DABridgeContract只需要验证并存储这个MerkleRoot。对比将DA存储到链上而言,这样使得保证DA的开销得到了极大的降低,同时由Celestia链本身提供安全保证。

在Celestia链上发生了什么?首先,DataBlob通过P2P网络传播,并基于Tendermint共识对DataBlob达成一致性。每个Celestia全节点都必须下载整个DataBlob。

由于Celestia本身仍然作为Layer1,需要对DataBlob进行广播和共识,这样一来实际上对网络的全节点有着很高的要求,而实现的吞吐量却未必高。

而EigenLayer采用了不同的架构——不需要做共识,也不需要P2P网络。

如何实现?

首先,EigenDA的节点必须在EigenLayer合约中Restake他们的ETH敞口,参与到Restaking中。EigenDA节点是以太坊质押者的子集。

其次,数据可用性的需求方拿到DataBlob后,使用纠删码和KZG承诺对DataBlob进行编码,并把KZG承诺发布到EigenDA智能合约。

随后Disperser把编码后的KZG承诺分发给EigenDA节点。这些节点拿到KZG承诺后,与EigenDA智能合约上的KZG承诺进行比较,确认正确后即对Attestation进行签名。之后Disperser一一获取这些签名,生成聚合签名并发布到EigenDA智能合约,由智能合约进行签名的验证。

在这个工作流中,EigenDA节点仅仅对Attestation进行了签名,来声称自己对编码后的DataBlob进行了存储。而EigenDA智能合约仅仅对聚合签名的正确性进行验证。那么我们如何确保EigenDA节点真的对数据可用进行了存储呢?

EigenDA采用了?ProofofCustody的方法。即针对这样一种情况,有一些LazyValidator,他们不去做本应该做的工作。而是假装他们已经完成了工作并对结果进行签名。

ProofofCustody的做法类似于欺诈证明:如果出现LazyValidator,任何人可以提交证明给EigenDA智能合约,由智能合约进行验证,如验证通过即对LazyValidator进行Slashing。(更多有关ProofofCustody的细节可参考Dankrad的文章,此处不再展开。

小结

经过上述讨论和比较,我们可以看到:

Celestia的思路与传统的Layer1一致,做的其实是Everybody-talks-to-everybody和Everybody-sends-everyone-else-everything,而区别是Celestia的共识和广播是针对DataBlob来做的,即仅确保数据可用。

而EigenDA做的是Everybody-talks-to-disperser和Disperser-sends-each-node-a-unique-share,把数据可用性和共识进行了解耦。

EigenDA不需要做共识和参与P2P网络的原因是,它相当于搭了以太坊的「便车」:借助EigenDA部署在以太坊上的智能合约,Disperser发布Commitments和AggregatedAttestations、由智能合约验证聚合签名的过程都是在以太坊上发生的,由以太坊提供共识保证,因此不必受限于共识协议和P2P网络低吞吐量的瓶颈。

这体现为节点要求和吞吐量之间的差异。

在安全性方面,Celestia使用Tendermint作为其共识,这意味着如果控制了Celestia的2/3的代币,就有可能发生多数攻击。与此同时,Celestia对纠删码进行欺诈证明,且轻客户端同时做DAS。这需要至少一个诚实的全节点和足够多的轻客户端来做DAS。

而EigenDA的安全性本质上依赖于以太坊的验证者集,继承了以太坊的Slashing原语,为DA层提供了EconomicSecurity的保证。如果Restaking在EigenDA的质押者越多,则意味着更多的安全。而降低节点的要求也同样有助于增强去中心化程度。

需要注意,EigenDA是应用层DA,区别于Danksharding的协议层DA——Application-specific相较于General-purpose的优势在于Sovereign和Flexibility。这使得针对不同Rollup的数据可用性需求可以定制不同的方案。

DiscussiononEconomicSecurity

最后再回头聊聊EconomicSecurity。

我们假设大多数EconomicSecurity参与者是理性的,受到经济激励的驱动,并总是倾向于最大化自己的利润。这些参与者可能是中间件的验证者,他们提供硬件设施、质押中间件原生代币,并获得代币作为奖励。

理性的参与者会考虑投入与产出:如果把这些投入放到其他地方,是否可以获得更多收益?所以,中间件需要保证其代币的价格维持在一定的水平。如果代币激励足够大,那么自然会吸引更多的验证者加入,从而进一步提升网络的去中心化程度;如果无法维护代币价值,项目方可能不得不自掏腰包运行验证者集,随之则将导致中心化以及审查问题。

另外还有安全级别的考虑——中间件的安全性取决于质押代币的总体价值;如果代币暴跌,攻击网络的成本也随之降低。

综上两点,中间件需要不断提升其协议代币的价值以强化激励,从而确保EconomicSecurity足够稳固。除构建中间件服务本身之外,项目方需要额外付出大量的边际成本。

EigenLayer的Restaking则同时解决了上述两个问题:

关于投入产出,如果硬件设施的Capacity足够,验证者无需投入额外代币成本,而是将已有的ETH质押份额扩展到新的协议。

当然,这将扩大一部分风险敞口。如何衡量这部分风险,在具体实施细节披露之前我们无法下判断,但直观来说,只要验证者没有主观作恶的意愿,这部分风险是在可控范围内的,因为Inactivity的本质区别于Slashing:Inactivity可能是意外下线或因为网络原因错过投票所导致的,而Slashing的原因则是恶意行为,后者将导致被移除验证者网络并失去ETH。

关于安全级别,具体将取决于EigenLayer本身以及针对特定中间件的采用率。目前以太坊网络共质押了14,836,535枚?ETH,以市场现价计算,假设只有1%的ETH参与到某个中间件的Restaking中,能够产生接近2亿美金的资产保护。此外,在去中心化程度方面,以太坊的验证者集亦是加密生态中最去中心化的群体。

ClosingThoughts

由于EigenLayer仍在早期阶段,我们缺少关于具体实施的材料,本文内容更多为逻辑面的梳理。对于一些技术细节仍待进一步探究和讨论。

但我们已经看到EigenLayer提出的HyperscalingEthereum的创新所在,在EigenLayer之上会有非常多有趣的话题值得探讨。如果您仔细阅读本文并理解了EigenLayer的Vision和Positioning,大概会感到与我们同样兴奋。

IOSG始终关注并积极拥抱以太坊生态,将持续跟进EigenLayer为以太坊未来格局带来的潜在改变及其投资机会。

PayattentiontoEigenLayer:)

请注意:本文部分idea来源于与EigenLayer团队的社区讨论

References

https://messari.io/report/eigenlayer-to-stake-and-re-stake-again

https://twitter.com/SalomonCrypto/status/1572094840619532288

https://twitter.com/\_nishil\_/status/1573018197829115905

https://twitter.com/MeirBank/status/1589013673385000960

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

地球链

[0:46ms0-0:799ms