在上一篇文章中,Alice 和 Bob 建立了一个双向的支付通道。现在,Alice 想要给一个第三方 Carol 支付 1 btc。
一般来说,Alice 和 Carol 需要在彼此之间开设一个支付通道。但实际上并不需要。因为 Bob 和 Carol 之间已经有了一个通道,所以 Alice 可以通过 Bob 给 Carol 支付。
具体来说,Alice 可以给 Bob 支付 1 btc,而 Bob 再支付 1 btc 给 Carol。
但是,Alice 实际上并不信任 Bob,或者 Carol 并不信任 Bob。她担心把钱给 Bob 之后,Bob 不会给 Carol;又或者,他把钱给了 Carol,但 Carol 谎称自己压根没见到钱,而 Alice 也不知道该找哪个来追责。
声音 | 联通尹正军:区块链底层技术等可以理解为数字经济的底层框架:金色财经报道,12月12日,区块链与数字经济高峰论坛暨2019第八届中关村大数据日上,联通大数据有限公司高级架构师尹正军演讲表示,区块链底层技术、P2P通信网络、大规模更高效的分布式存储计算技术、密码学等可以理解为数字经济的底层框架。数字经济类似于智慧城市,需要有一套科学、合理的度量标准。参考工信部的评价办法,数字经济分为基础指标和前瞻性指标,前瞻性指标包括5G、物联网、区块链等。[2019/12/14]
因此,Alice 希望能保证,仅当 Bob 给了 Carol 1 btc,自己才需要给 Bob 支付 1 btc。
当 Alice 要给 Carol 支付 1 btc 时,她让 Carol 先生成一个秘密值(一个随机的数字串)并把对应的哈希值发给她。Alice 也告诉 Carol 可以用这个秘密值跟 Bob 交换 1 btc。
动态 | 美国德克萨斯州寻求由区块链提供支持的ID管理解决方案:9月17日消息,德克萨斯州奥斯汀市一直致力于为遇到无家可归者的人们开发区块链驱动的身份识别系统。该倡议被称为MyPass,计划中的最终产品是一个平台,将个人记录和id的数字副本收集在一个手机号码或电子邮件地址下,使实体副本冗余。一个人与不同服务的所有交互都可以使用区块链记录在一个台账上,而不是在多个由个人管理的数据库之间存储数据,在每次交互发生时,由经过验证的机构和个人组成的机构和个人验证每个交互。这个想法来自于在难民营中实施的类似项目,比如世界粮食计划署在约旦的建筑项目。[2018/9/17]
与此同时,Alice 把从 Carol 处得到的哈希值发给 Bob,并告诉 Bob 如果 Bob 能提供对应于这个哈希值的原始值,她就会给 Bob 1 btc(这个原始值当然只有 Carol 拥有)。
现场 | 中央民族大学邓建鹏:区块链公链应该是被监管并被监管理解的:金色财经现场报道,今日火币公链第二期技术创想会在韩国首尔举行,中央民族大学法学院教授邓建鹏(HTX战队)在会上分享了自己对打造可监管公链的思考:在中国,区块链公链应该是可被理解、公开透明、可被监管并被监管理解的。公链的法律责任承担主体问题、安全标准问题、金融行业基本规则遵守问题是可监管的几个方向。[2018/9/14]
所以 Bob 找到 Carol,用 1 btc 换来了 Carol 的初始值。
然后,Bob 找回 Alice,提供这个初始值。Alice 因此知道了 Bob 一定给过钱了,也就是 Carol 肯定已经收到了 1 btc,于是就把钱给了 Bob。
瑞典金融市场部长柏博伦认为 Nordea银行禁止其员工拥有或交易数字货币的规定可以理解:本月瑞典银行巨头Nordea表示禁止其员工拥有或交易数字货币。今天瑞典金融市场部长柏博伦表示,行业采取这种措施是可以理解的。柏博伦表示银行对自己或他们的员工有什么样的投资规定取决于他们,考虑到加密货币市场的波动性,柏博伦对银行正在制定这样的规定不感到惊讶。[2018/1/26]
皆大欢喜。
几乎,啊,几乎是皆大欢喜。
在这种「过家家」的情形下,中间人 Bob 还是需要新人 Alice 和 Carol。Bob 必须相信 Carol 给他的是一个真正有用的值(不然钱都给了就拿不回来了),而且要相信 Alice 真的会给他 1 btc,假如他能提供对应于哈希值的原像的话。
这时候,我们就需要哈希时间锁合约(HTLC)啦。
哈希时间锁可以让 Alice 和 Bob 用秘密值来交换 btc(当然 Bob 和 Carol 也需要这个,但我们先按下不提)。
为了使用哈希时间锁,Alice 要将 1 btc 发送至一个新的多签地址,而非直接发送给 Bob。这个地址中锁定的 btc 可以通过两种方式解锁。
第一种方式是 Bob 将自己的签名和秘密值一起发送至该地址。
第二种方式是 Alice 将自己的签名发送至该地址。但是,这个方式存在 CLTV 时间锁限制:Alice 必须等待一段时间(例如两周)才能签署并广播交易取走这个 btc。
也就是说,Bob 有两周时间来创建一个包含签名和秘密值的交易,并广播该交易,将多签地址上的 btc 发送给自己。这样一来,这笔交易就有了保证。只要 Bob 能提供秘密值,他就能取走 Alice 的 btc:在比特币网络公开广播该交易可以让 Alice 看到它。
如果 Bob 没有在规定时限内提供秘密值,Alice 就可以取回她的 btc。就这么简单。
再说回网络,因为这是哈希时间锁合约真正发挥作用的地方。
如上文所述,不仅 Alice 和 Bob 之间有哈希时间锁合约,Bob 和 Carol 之间也有。因此,如果 Carol 向 Bob 索要 btc,Bob 也可以从 Carol 那里取得秘密值。这些在区块链上都是可见的。
因此,如果发生这种情况,Bob 也一定可以从 Alice 那里拿到 1 btc。Bob 可以将从 Carol 那里拿到的秘密值在链上公开,发送至他与 Alice 的哈希时间锁合约,然后取走多签地址上的 1 btc。这两个状态通道有效地关联了起来。
最后要强调的一点是,Bob 必须在有效期内从 Carol 那里拿到秘密值,否则 Alice 就有可能取回多签地址上的 1 btc。如果等 Alice 取回 1 btc 之后 Bob 才从 Carol 那里拿到了秘密值,Bob 就会被卡在中间进退两难。因此,Bob 和 Carol 的哈希时间锁合约必须比 Alice 和 Bob 的先到期(例如,前者的时限可以设成 10 天,而非两周)。这就是为什么哈希时间锁合约需要 CheckLockTimeVerify(绝对时间锁)而非 CheckSequenceVerify(相对时间锁)。
最后还有一个问题需要解决:要保证闪电网络的可用性,所有这些必须在链下完成。具体是如何实现的将在本系列第三篇文章中揭晓。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。