PLO:ZKSwap团队解读零知识证明PLONK协议

在上一篇?ZKSwap团队解读零知识证明PLONK电路?主要描述了PLONK协议里的一个核心部分,用置换校验的方法去证明电路门之间的一致性;接下来,将继续分享如何证明门的约束关系的成立,以及整体的协议剖析。

门约束

举个简单的例子,假如存在一个电路,电路中仅有3个乘法门,对应的约束如下:

L1*R1-O1=0

L2*R2-O2=0

L3*R3-O3=0

进行多项式压缩:定义多项式函数L(X)、R(X)、O(X)满足:

L(1)=L1,R(1)=R1,O(1)=O1

L(2)=L2,R(2)=R2,O(2)=O2

L(3)=L3,R(3)=R3,O(3)=O3

此时,定义新的多项式函数F(X),令F(X)=L(X)*R(X)-O(X)

则有:

F(1)=L(1)*R(1)-O(1)=0

Ripple已获得新加坡金融管理局原则上批准主要支付机构许可证的申请:金色财经报道,Ripple已获得新加坡金融管理局原则上批准主要支付机构许可证的申请。这将Ripple Markets APAC Pte Ltd(Ripple 在新加坡的业务分支机构)在新加坡提供受监管的数字支付代币产品和服务。 Ripple在声明中表示,该批准还将允许Ripple公司进一步扩大客户对其支持加密的按需流动性服务的使用。

Ripple CEO Brad Garlinghouse表示,新加坡在建立明确的道路规则以承认数字资产的创新和现实实用性及其对全球金融体系的好处方面继续处于全球领先地位。[2023/6/22 21:54:02]

F(2)=L(2)*R(2)-O(2)=0

F(3)=L(3)*R(3)-O(3)=0

也就是表明:如果多项式函数F(X)在X=1、2、3处有零点,则说明门关系约束成立。

多项式函数F(X)在X=1、2、3处有零点则表明多项式F(X)可以被(X-1)(X-2)(X-3)整除,为了和论文一致,我们把这个多项式函数设置成Z(X),即:

Tornado Cash攻击者发布一项恢复治理的新提案:5月22日消息,Tornado Cash 社区成员 Tornadosaurus-Hex 在论坛中表示,Tornado Cash 攻击者发布了一项恢复治理的新提案,并且很有可能会执行它,他在恶意提案中给自己的 TORN 作为 lockedBalance-s,并将其重置为 0。如果提案通过,攻击者集成到协议中的恶意代码将被删除,代币持有者将重新控制 Tornado Cash 的 DAO 治理权。Tornadosaurus-Hex 表示,他或者其他人需要提出一个提案来更新治理合约。Tornadosaurus-Hex 已经准备好修复逻辑,但需要验证存储布局,以便代理升级不会破坏合约。

鉴于攻击者持有 TORN 治理代币,该提案似乎将在 5 月 26 日投票结束时获得通过,但尚不清楚该行动何时执行。当提案通过时,攻击者集成到协议中的恶意代码(允许他们从他人那里窃取投票权)将被删除,Tornado Cash 的 DAO 的治理权将交还给代币持有者。[2023/5/22 15:17:57]

F(X)=T(X)*Z(X)==>T(X)=F(X)/Z(X)

Bybit在以太坊上海升级前推出支持ETH质押选项的Web3质押池:金色财经报道,加密货币交易所Bybit在以太坊上海升级前宣布推出支持ETH质押选项的Web3质押池,据悉其服务无需用户持有ETH,而是可以使用BTC、USDT和USDC余额访问该产品。(newsghana)[2023/4/1 13:39:32]

如果能证明T(X)是一个多项式,则说明多项式F(X)与Z(X)有相同的零点,进而说明门约束关系成立。

一般过程应该如下:

P计算F(X)并把F(X)发送给V;V根据Z(X)直接校验F(X)/Z(X)但是如此过程存在两个问题,一个是复杂性问题,假如F(X)的阶为n,那通信复杂度就是O(n);而是安全性问题,多项式F(X)完全暴露给V。

那应该如何解决这两个问题呢?最佳的答案可能就是:多项式承诺

多项式承诺

什么是多项式承诺?就是证明方P用一个很短的数据来代表一个多项式F,这些很短的数据可以被验证方V用来验证多项式F在某一点的值确实为证明方P声称的值z。

SBF:FTX将推出IP地址白名单功能,可显著降低API订单延迟:10月11日消息,FTX创始人兼首席执行官SBF在社交媒体上发文表示,FTX将推出IP地址白名单功能,用户可在API页面列出一串IP地址白名单,绕过Cloudflare直接快速访问FTX服务器。这将显著降低API订单延迟。[2022/10/11 10:30:34]

具体看一下论文里的定义:

由图可知:

Setup:初始化,生成计算多项式承诺需要的一些必备参数;Commit:计算多项式承诺,其结果是一个值;Open:返回与多项式承诺对应的多项式函数;VerifyPoly:验证多项式承诺是否和多项式函数一致;CreateWitness:证明多项式函数在某一点的值是否是证明方P声称的值,具体的数学方法就是:判断多项式是否能被整除,即:VerifyEval:验证方V验证多项式函数在某一点的值是否是证明方P声称的值,具体的数学方法是:利用双线性配对验证其数学乘法逻辑关系。继续回到我们上面的问题:

Arbitrum奥德赛活动已进行超10万笔转账共计超2.3万ETH:6月25日消息,据Dune数据显示,截至下午5时,Arbitrum奥德赛活动共进行了109768笔转账,共计23223枚ETH,其中最高单笔交易为498ETH。据了解,奥德赛第一周的主题是跨链桥,跨链桥转账总金额最高的是Hop Protocol,超过了1万枚ETH转账占比达46.5%,排名第二的是Celer Network,超过3360枚ETH转账占比14.5%,排名第三的是Across,超过2170枚ETH转账占比9.4%[2022/6/25 1:31:09]

证明方如何证明:T(X)=F(X)/Z(X),我们再简化一下场景,就令Z(X)=X-1,则:

T(X)=F(X)/(X-1)==>T(X)*(X-1)=F(X)==>T(X)*X=F(X)+T(X)

对应多项式承诺的协议可知:证明方P其实是想证明多项式函数F(X)再X=1处的值为0,因此根据协验证方只需要证明:

e(Commit(T(x)),x*G)=?e(Commit(F(x))+Commit(T(x)),G)(双线性配对的性质)

可以看出,利用多项式承诺的数学工具,既可以实现复杂度的优化,又可以实现隐私保护。

协议

接下来分析一下完整的PLONK协议:

Relation

上图表示了PLONK算法里,要证明的一种关系,需要说明的是:

w代表着电路里的输入、输出,总共3n个,n是电路里乘法门的数量,每个门都有左输入,右输入和输出,因此w总共有3n个;q*代表着选择向量,它的取值对应这这个是乘法门,还是加法门等类似的约束类型σ代表着置换多项式,其表示门之间的一致性约束索引倒数第一个公式代表门之间的约束成立倒数第二个公式代表门的约束关系成立CRS&P_Input&V_Input

上图表示了PLONK算法里的CRS设置,以及证明方P和验证方V的一些输入,需要说明的是:

整个协议都是基于多项式的,因此需要构建对应的多项式形式。多项式σ的阶是3n的,由于和多项式承诺相关的CRS最高的阶位n+2,因此需要把σ拆分成3个多项式S,分别记录每个多项式的置换关系(L、R、O);为了减少通信复杂度和保护隐私,协议基于多项式承诺构建,因此验证方V的输入都是承诺值。Prove

上图表示了PLONK算法里证明方的一些操作,需要说明的是:

b1...b9是随机数,从用法看是为了安全,但是我暂时也没明白,不加这个随机数,又会有什么安全问题?a(X)、b(X)、c(X)分别是代表了电路里的左输入,右输入和输出、、表示多项式的承诺值,参考多项式承诺小节里的承诺计算方法

上图表示了PLONK算法里证明方的一些操作,主要是置换校验,参考第一篇的置换校验的协议过程,生成多项式z(X),需要说明的是:

β和?都是用来生成置换校验函数的参数,详见第一篇里f(x)和g(x)的生成过程;z(X)的生成方式对应置换校验里跨多项式的生成过程,Li(X)为拉格朗日多项式基,性质满足,尽在x=i的时候为1,其他为0;注意区分ω和w,ω是群H的生成元,是多项式的自变量的取值。w是电路的左输入,右输入和输出,是多项式L,R,O在在群H上的取值。

上图表示了PLONK算法里证明方P的一些操作,主要是把门约束和门之间的一致性约束组合到一起,通过α,需要说明的是:

根据前面的描述,门约束多项式和一致性约束多项式在群H上的所有元素都是取值为0的,因此都会被多项式ZH(X)整除,等同于上面所述的T(X);因此,证明方只要能证明整除的结果的确是多项式,那就能证明,门约束多项式和一致性多项式在群H所有元素上取值为0,即所有约束关系成立,即电路逻辑成立;可以知道的是t(X)的阶最高为3n,但是用于计算承诺的CRS只到了n的级别,因此需要把多项式t(X)拆分,然后单独计算承诺值。

上图表示了PLONK算法了证明方P的一些操作,主要根据多项式承诺的协议,前面P算出了多个多项式在点x=z处的值是多少,现在要用多项式承诺协议去证明,这些计算是正确的,需要说明的是:

为了减少验证方V的操作复杂度,t(X)的分子部分r(X)在x=z处的值,P计算好,然后验证方直接验证,其他的操作类似;v的值看起来是为了更安全;Wz(X)对应多项式协议里的CreateWitness操作,证明这些多项式r(X),a(X),b(X)等在x=z处的值确实等于r,a,b等,对Wzw(X)同理,并返回承诺值。Verify

至此,证明方P的所有操作都完事了,接下来都是验证方V的操作。

上图表示了PLONK算法里验证方V的一些操作,主要重新生成相关的参数,确保证明方P没有作恶。需要说明的是:

从输入看,比较清晰,就是一些公开的输入和证明方P的证明输出;根据输入,生成置换校验过程中需要的一些参数

上图表示了PLONK算法里验证方V的一些操作,对于一些公开的,并且计算复杂度很小的多项式,其在x=z处的值还是需要自己计算,更为方便。需要说明的是:

根据证明方P的过程来看,验证方V的核心工作就是验证两个多项式承诺;两个多项式承诺验证需要两个配对,可以通过一个参数组合成一个配对,即μ;在验证前,先计算Wz(x),Wzw(x)的分母在x=z处的值,两部分,减数和被减数,分别对应、。μ作为系数的,就是对应Wzw(X)多项式的。最后通过一个双线性配对操作完成两个多项式承诺的验证。结束

至此,PLONK算法的协议原理已全部分享完成,公式很密集,但是细分下来,又很有层次感。能坚持看完,已实属不易。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

地球链

瑞波币GPT:太平养老成功举办年金新政解读交流会

为促进年金基金在新形势下健康发展,防范化解投资风险,实现基金保值增值,依据有关规定,人社部于2020年底研究下发《人力资源社会保障部关于调整年金基金投资范围的通知》,从2021年1月1日起实施.

[0:0ms0-1:500ms